Что такое learning rate
Перейти к содержимому

Что такое learning rate

  • автор:

Коэффициент скорости обучения (Learning rate)

Коэффициент скорости обучения — это параметр градиентных алгоритмов обучения нейронных сетей, позволяющий управлять величиной коррекции весов на каждой итерации. Например, в алгоритме обратного распространения ошибки он вводится как коэффициент η при градиенте:

Выбирается в диапазоне от 0 до 1. Ноль указывать бессмысленно, поскольку в этом случае корректировка весов вообще производиться не будет.

Выбор параметра противоречив. Большие значения (0,7 — 1) будут соответствовать большому значению шага коррекции. При этом алгоритм будет работать быстрее (т.е. для поиска минимума функции ошибки потребуется меньше итераций). Однако может снизиться точность настройки модели на минимум функции ошибки, что потенциально увеличит ошибку обучения.

Малые значения коэффициента (0,1 — 0,3) соответствуют меньшему шагу коррекции весов. В этом случае число шагов (или эпох) обучения, требуемое для поиска экстремума, как правило, увеличивается, но возрастает и точность настройки алгоритма на минимум функции ошибки, что потенциально уменьшает ошибку обучения. На практике коэффициент скорости обучения обычно подбирают экспериментально.

В алгоритме обучения карт Кохонена скорость обучения не является постоянной величиной, а линейно уменьшается с увеличением числа итераций. В данном случае она определяет скорость убывания величины коррекции весов. Чаще всего используется линейно-убывающая зависимость, т.е. w n − w n − 1 = − η n , где n — номер итерации.

Логика данного подхода проста. На начальных шагах обучения веса нейронов карты далеки от оптимальных, поэтому их можно менять на большие величины (грубая подстройка). По мере приближения весов к желаемым шаг коррекции должен быть уменьшен с целью более точной настройки (точная подстройка).

Learning Rate

Learning Rate, in the context of machine learning, is a hyperparameter that determines how quickly a model learns from the data during training. It controls the size of the step taken in each iteration of the optimization algorithm, affecting the convergence and accuracy of the model.

How Learning Rate Works

When training a machine learning model, the learning rate determines the amount by which the model’s parameters, such as weights and biases, are updated in response to the error between predicted and actual values. A high learning rate allows for faster learning but can lead to overshooting the optimal values, resulting in unstable or inaccurate models. Conversely, a low learning rate may lead to slow convergence or getting stuck in local optima.

Why Learning Rate is Important

The learning rate is a critical hyperparameter as it greatly impacts the performance of machine learning models. Choosing an appropriate learning rate is crucial to balance the trade-off between learning speed and accuracy. A well-tuned learning rate can help achieve faster convergence, better generalization, and improved model performance on unseen data.

The Most Important Learning Rate Use Cases

Learning rate optimization techniques are used in various machine learning algorithms, including gradient descent-based optimization methods such as stochastic gradient descent (SGD), Adam, and RMSprop. These methods adjust the learning rate during training to improve model performance and convergence speed.

Other Technologies or Terms Closely Related to Learning Rate

Learning rate is closely related to other concepts in machine learning, such as:

  • Batch Size: The number of samples used in each iteration of training.
  • Loss Function: The measure of the error or discrepancy between predicted and actual values.
  • Regularization: Techniques used to prevent overfitting and improve generalization.
  • Optimization Algorithms: Methods used to minimize the loss function and update model parameters.

Why Dremio Users Would be Interested in Learning Rate

Dremio, a data lakehouse platform, enables organizations to efficiently process, analyze, and derive insights from large volumes of data. Understanding the role of learning rate can help Dremio users optimize their machine learning workflows and improve the performance of their models. By fine-tuning the learning rate, users can accelerate model training and enhance the accuracy of their data processing and analytics tasks.

Additional Considerations

In addition to learning rate, Dremio users may benefit from exploring other techniques and tools for model optimization and performance improvement. This may include:

  • Hyperparameter Tuning: Optimizing other hyperparameters of machine learning models to achieve better performance.
  • Feature Engineering: Transforming and selecting relevant features from raw data to enhance model accuracy.
  • Data preprocessing: Manipulating and preparing data to improve model training and generalization.
  • Ensemble Methods: Utilizing multiple models to make more accurate predictions and reduce bias/variance.

Why Dremio Users Should Know About Learning Rate

Learning rate plays a crucial role in machine learning model training and optimization. Being aware of learning rate and its impact on model performance can help Dremio users fine-tune their machine learning workflows, minimize training time, and increase the accuracy of their data processing and analytics tasks. Understanding learning rate optimization techniques can empower users to leverage Dremio’s capabilities effectively and derive actionable insights from their data.

Ready to Get Started?

Perform ad hoc analysis , set up BI reporting , eliminate BI extracts , deliver organization-wide self-service analytics , and more with our free lakehouse. Run Dremio anywhere with both software and cloud offerings.

Learning Rate

In machine learning (ML), the learning rate is a hyperparameter that determines the step size at which the model’s parameters are updated during training. It is a key factor in the optimization process, and can have a significant impact on the model’s performance.

The size of the steps that the optimization method takes to update the model’s parameters is determined by the learning rate, which is normally chosen before training starts. The model’s parameters may be updated too quickly if the learning rate is too high, which could cause it to overshoot the ideal solution and exhibit unstable or oscillatory behavior. The model’s parameters could be updated too slowly if the learning rate is too low, which could hinder convergence and necessitate more training iterations to get the best outcome.

It can be difficult to determine the ideal learning rate for a specific model and dataset, and this process frequently involves some trial and error. One typical method is to experiment with a variety of learning rates and assess the model’s performance at each stage to find the best one. The convergence and optimization of the model can be enhanced by dynamically adjusting the learning rate during training utilizing strategies like learning rate scheduling.

Choosing the right value can have a big impact on the performance and convergence of the model, which makes the learning rate a key hyperparameter in ML.

Scale your annotation workflows and power your model performance with data-driven insights

medical banner

Try Encord today

How do you determine the learning rate for a machine learning model?

It can be difficult to determine the ideal learning rate for a specific model and dataset, and this process frequently involves some trial and error. One typical method is to experiment with a variety of learning rates and assess the model’s performance at each stage to find the best one. The convergence and optimization of the model can be enhanced by dynamically adjusting the learning rate during training utilizing strategies like learning rate scheduling.

Choosing the right value can have a big impact on the performance and convergence of the model, which makes the learning rate a key hyperparameter in ML.

What are some common challenges or pitfalls of using learning rate scheduling and adaptive learning methods?

Learning rate scheduling and adaptive learning methods are techniques to optimize the performance of artificial neural networks (ANNs) by adjusting the learning rate during the training process. The learning rate is a hyperparameter that controls how much the network updates its weights based on the gradient of the loss function. However, choosing the right learning rate and adapting it to the changing dynamics of the network can be challenging and have some pitfalls. In this article, you will learn about some of the common issues and how to avoid them.

Лучшие эксперты в этой статье
Выбираются сообществом на основе 12 вкладов. Подробнее
Получите эмблему топ-эксперта сообщества

Вносите свой вклад в коллективные статьи, чтобы получить в профиле признание за ваше профессиональное мнение. Подробнее

Начать вносить свой вклад
Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning |…

Узнайте, что публикуют другие

Fixed learning rate

A fixed learning rate is the simplest approach to set the learning rate for an ANN. It means that the learning rate remains constant throughout the training process. However, this can lead to suboptimal results or even failure to converge. If the learning rate is too high, the network may overshoot the optimal point and oscillate around it, or diverge and produce large errors. If the learning rate is too low, the network may take too long to converge or get stuck in a local minimum.

Выскажите свое мнение
Помогите другим, рассказав подробнее (не менее 125 символов) Отмена
Добавить Сохранить
Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Fixed learning rates do not allow for fine-tuning the learning rate during training, meaning that the model may not be able to adapt to changes in the optimization landscape as it approaches convergence. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

A fixed learning rate can lead to slow convergence, where the model takes longer to reach optimal performance. This can occur when the learning rate is too small, leading to the model getting stuck in local minima or when the learning rate is too high, leading to instability during training. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Fixed learning rates can lead to overfitting, where the model adapts too much to the training data and performs poorly on new data. This can occur when the learning rate is too high, leading to overemphasizing noisy or irrelevant features in the training data. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

См. еще вклады

Learning rate decay

Learning rate decay is a technique to gradually reduce the learning rate as the training progresses. This can help the network to converge faster and more accurately, as it allows the network to make large steps initially and then fine-tune as it approaches the optimal point. However, learning rate decay also has some drawbacks. It can be difficult to choose the right decay rate and schedule, as different networks and datasets may require different settings. Moreover, learning rate decay can still be affected by local minima or plateaus, where the network stops improving despite the lower learning rate.

Выскажите свое мнение
Помогите другим, рассказав подробнее (не менее 125 символов) Отмена
Добавить Сохранить
Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

If the learning rate decays too quickly, the model’s convergence may slow down, leading to longer training times and increased computational costs. If the learning rate decays too quickly, the model may prematurely converge to a suboptimal solution, leading to inferior performance. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

If the learning rate decays too slowly, the model may overfit to the training data, leading to poor generalization performance on new data. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Learning rate decay is a hyperparameter that needs to be tuned, and finding the optimal learning rate decay can be challenging, especially when training deep learning models with a large number of parameters. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

См. еще вклады

Adaptive learning methods

Adaptive learning methods are techniques that adjust the learning rate dynamically based on the feedback from the network and the data. Some examples of adaptive learning methods are AdaGrad, RMSProp, Adam, and Adadelta. These methods aim to overcome some of the limitations of fixed or decaying learning rates, by adapting to the individual characteristics of each weight, feature, or sample. However, adaptive learning methods also have some challenges or pitfalls. They can be more complex and computationally expensive than simpler methods. They can also introduce new hyperparameters that need to be tuned, such as the momentum, beta, or epsilon values. Furthermore, adaptive learning methods can sometimes lead to overfitting or underfitting, as they may not generalize well to new or unseen data.

Выскажите свое мнение
Помогите другим, рассказав подробнее (не менее 125 символов) Отмена
Добавить Сохранить
Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Some adaptive learning methods, such as Adagrad or RMSprop, can result in slower convergence, where the model takes longer to reach optimal performance. This can occur when the learning rate is decreased too rapidly, leading to the model getting stuck in local minima. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Some adaptive learning methods are black-box algorithms, meaning they are difficult to interpret, making it challenging to understand how the model is making predictions. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Vinita Silaparasetty

Generative AI Expert | Data Science Trainer | Apress Author | Speaker | Google Developer Expert in Machine Learning | Google Women Techmakers Ambassador | Python | Scikit-Learn | Tensorflow | Keras

Adaptive learning methods may not perform well when the underlying data distribution changes over time. This can occur in scenarios where the training data is non-stationary, such as in time-series analysis or online learning. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

См. еще вклады

Learning rate warmup

Learning rate warmup is a technique to gradually increase the learning rate at the beginning of the training process, before applying a decay or an adaptive method. This can help the network to avoid being trapped in poor regions of the loss landscape, and to reach a more stable and robust state. Learning rate warmup can be especially useful for deep or complex networks, or when using large batch sizes or distributed training. However, learning rate warmup also has some potential pitfalls. It can be tricky to determine the optimal warmup rate and duration, as they depend on the network architecture, the data distribution, and the optimization method. Additionally, learning rate warmup can increase the training time and complexity, as it requires more iterations and calculations.

Выскажите свое мнение
Помогите другим, рассказав подробнее (не менее 125 символов) Отмена
Добавить Сохранить
Adarsh Solanki
Experienced Product Leader | Exploring Innovations in AI/ML

The reason that a lower initial learning rate during the warmup period can be useful, is that with initial weights, you can assume the gradient may be quite a bit higher, so a lower learning rate can prevent overshooting in the initial phases. …См. еще

Переведено
Показать перевод Показать оригинал
Поздравляю
Поддерживаю
Информативно

  • Копировать ссылку на вклад
  • Пожаловаться на вклад Спасибо за уведомление! Вы больше не увидите этот вклад.

Learning rate finder

Learning rate finder is a technique to empirically find the optimal range of learning rates for an ANN. It involves running a short training session with a range of increasing or decreasing learning rates, and plotting the loss against the learning rate. The optimal range of learning rates is usually where the loss decreases the fastest or is the lowest. Learning rate finder can be a useful tool to save time and effort in tuning the learning rate, and to avoid some of the pitfalls of other methods. However, learning rate finder also has some limitations. It may not be accurate or reliable for all networks or datasets, as it depends on the quality and quantity of the data, the initialization of the weights, and the random seed. Moreover, learning rate finder can be sensitive to noise or outliers, and may not account for the changes in the loss landscape during the training process.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *