Rukovodstvo
статьи и идеи для разработчиков программного обеспечения и веб-разработчиков.
Как переименовать столбец Pandas DataFrame в Python
Введение Pandas [https://pandas.pydata.org/] — это библиотека Python для анализа и обработки данных. Почти все операции в пандах вращаются вокруг DataFrames. Dataframe — это абстрактное представление двумерной таблицы, которая может содержать все виды данных. Они также позволяют нам давать имена всем столбцам, поэтому часто столбцы называются атрибутами или полями при использовании DataFrames. В этой статье мы увидим, как мы можем переименовать уже существующий столбец DataFrame.
Время чтения: 3 мин.
Вступление
Pandas — это библиотека Python для анализа и обработки данных. Почти все операции в pandas вращаются вокруг DataFrame s.
Dataframe — это абстрактное представление двумерной таблицы, которая может содержать все виды данных. Они также позволяют нам давать имена всем столбцам, поэтому часто столбцы называются атрибутами или полями при использовании DataFrames .
В этой статье мы увидим, как мы можем переименовать уже существующие DataFrame .
Есть два варианта управления именами столбцов DataFrame :
- Переименование столбцов существующего DataFrame
- Назначение имен пользовательских столбцов при создании нового DataFrame
Давайте посмотрим на оба метода.
Переименование столбцов существующего фрейма данных
У нас есть образец DataFrame ниже:
1 2 3 4
import pandas as pd data = 'Name':['John', 'Doe', 'Paul'], 'age':[22, 31, 15]> df = pd.DataFrame(data)
DataFrame df выглядит так:
Чтобы переименовать столбцы этого DataFrame , мы можем использовать метод rename() который принимает:
- Словарь в качестве columns содержащий сопоставление исходных имен столбцов с именами новых столбцов в виде пар ключ-значение
- boolean значение в качестве inplace , которое, если установлено в True , внесет изменения в исходный Dataframe
Давайте изменим имена столбцов в нашем DataFrame с Name, age на First Name, Age .
df.rename(columns = 'Name' : 'First Name', 'age' : 'Age'>, inplace = True)
Теперь наш df содержит:
Назначьте имена столбцов при создании фрейма данных
Теперь мы обсудим, как назначать имена столбцам при создании DataFrame .
Это особенно полезно, когда вы создаете DataFrame из csv и хотите игнорировать имена столбцов заголовков и назначить свои собственные.
Передав список names , мы можем заменить уже существующий столбец заголовка нашим собственным. В списке должно быть имя для каждого столбца данных, в противном случае создается исключение.
Обратите внимание: если мы хотим переименовать только несколько столбцов, лучше использовать метод rename DataFrame после его создания.
Мы будем создавать DataFrame используя out.csv , который имеет следующее содержимое:
1 2 3 4
Name, age John, 22 Doe, 31 Paul, 15
Обратите внимание, что первая строка в файле является строкой заголовка и содержит имена столбцов. Pandas по умолчанию назначает имена столбцов DataFrame из первой строки.
Следовательно, мы укажем игнорировать строку заголовка при создании нашего DataFrame и укажем имена столбцов в списке, который передается в аргумент names
1 2 3
columns = ['First Name', 'Age'] df = pd.read_csv('out.csv', header = None, names = columns) df
Другой способ сделать это — указать имена столбцов в простом старом конструкторе DataFrame() .
Единственное отличие состоит в том, что теперь параметр, который принимает список имен column называется столбцом вместо names :
1 2 3 4 5 6
import numpy as np new_columns = ['First Name', 'Age'] data = np.array([["Nicholas", 23],["Scott", 32],["David", 25]]) df = pd.DataFrame(data, columns = new_columns)
Это приводит к другому DataFrame :
Заключение
В этой статье мы быстро рассмотрели, как мы можем называть и переименовывать столбцы в DataFrame . Либо путем присвоения имен при DataFrame экземпляра DataFrame, либо путем переименования их после факта с помощью метода rename()
Licensed under CC BY-NC-SA 4.0
Аналитикам: большая шпаргалка по Pandas
Привет. Я задумывал эту заметку для студентов курса Digital Rockstar, на котором мы учим маркетологов автоматизировать свою работу с помощью программирования, но решил поделиться шпаргалкой по Pandas со всеми. Я ожидаю, что читатель умеет писать код на Python хотя бы на минимальном уровне, знает, что такое списки, словари, циклы и функции.
- Что такое Pandas и зачем он нужен
- Структуры данных: серии и датафреймы
- Создаем датафреймы и загружаем в них данные
- Исследуем загруженные данные
- Получаем данные из датафреймов
- Считаем производные метрики
- Объединяем несколько датафреймов
- Решаем задачу
Что такое Pandas и зачем он нужен
Pandas — это библиотека для работы с данными на Python. Она упрощает жизнь аналитикам: где раньше использовалось 10 строк кода теперь хватит одной.
Например, чтобы прочитать данные из csv, в стандартном Python надо сначала решить, как хранить данные, затем открыть файл, прочитать его построчно, отделить значения друг от друга и очистить данные от специальных символов.
> with open('file.csv') as f: . content = f.readlines() . content = [x.split(',').replace('\n','') for x in content]
В Pandas всё проще. Во-первых, не нужно думать, как будут храниться данные — они лежат в датафрейме. Во-вторых, достаточно написать одну команду:
> data = pd.read_csv('file.csv')
Pandas добавляет в Python новые структуры данных — серии и датафреймы. Расскажу, что это такое.
Структуры данных: серии и датафреймы
Серии — одномерные массивы данных. Они очень похожи на списки, но отличаются по поведению — например, операции применяются к списку целиком, а в сериях — поэлементно.
То есть, если список умножить на 2, получите тот же список, повторенный 2 раза.
> vector = [1, 2, 3] > vector * 2 [1, 2, 3, 1, 2, 3]
А если умножить серию, ее длина не изменится, а вот элементы удвоятся.
> import pandas as pd > series = pd.Series([1, 2, 3]) > series * 2 0 2 1 4 2 6 dtype: int64
Обратите внимание на первый столбик вывода. Это индекс, в котором хранятся адреса каждого элемента серии. Каждый элемент потом можно получать, обратившись по нужному адресу.
> series = pd.Series(['foo', 'bar']) > series[0] 'foo'
Еще одно отличие серий от списков — в качестве индексов можно использовать произвольные значения, это делает данные нагляднее. Представим, что мы анализируем помесячные продажи. Используем в качестве индексов названия месяцев, значениями будет выручка:
> months = ['jan', 'feb', 'mar', 'apr'] > sales = [100, 200, 300, 400] > data = pd.Series(data=sales, index=months) > data jan 100 feb 200 mar 300 apr 400 dtype: int64
Теперь можем получать значения каждого месяца:
> data['feb'] 200
Так как серии — одномерный массив данных, в них удобно хранить измерения по одному. На практике удобнее группировать данные вместе. Например, если мы анализируем помесячные продажи, полезно видеть не только выручку, но и количество проданных товаров, количество новых клиентов и средний чек. Для этого отлично подходят датафреймы.
Датафреймы — это таблицы. У их есть строки, колонки и ячейки.
Технически, колонки датафреймов — это серии. Поскольку в колонках обычно описывают одни и те же объекты, то все колонки делят один и тот же индекс:
> months = ['jan', 'feb', 'mar', 'apr'] > sales = < . 'revenue': [100, 200, 300, 400], . 'items_sold': [23, 43, 55, 65], . 'new_clients': [10, 20, 30, 40] . >> sales_df = pd.DataFrame(data=sales, index=months) > sales_df revenue items_sold new_clients jan 100 23 10 feb 200 43 20 mar 300 55 30 apr 400 65 40
Объясню, как создавать датафреймы и загружать в них данные.
Создаем датафреймы и загружаем данные
Бывает, что мы не знаем, что собой представляют данные, и не можем задать структуру заранее. Тогда удобно создать пустой датафрейм и позже наполнить его данными.
> df = pd.DataFrame()
А иногда данные уже есть, но хранятся в переменной из стандартного Python, например, в словаре. Чтобы получить датафрейм, эту переменную передаем в ту же команду:
> df = pd.DataFrame(data=sales, index=months))
Случается, что в некоторых записях не хватает данных. Например, посмотрите на список goods_sold — в нём продажи, разбитые по товарным категориям. За первый месяц мы продали машины, компьютеры и программное обеспечение. Во втором машин нет, зато появились велосипеды, а в третьем снова появились машины, но велосипеды исчезли:
> goods_sold = [ . , . , . . ]
Если загрузить данные в датафрейм, Pandas создаст колонки для всех товарных категорий и, где это возможно, заполнит их данными:
> pd.DataFrame(goods_sold) bicycles cars computers soft 0 NaN 1.0 10 3 1 1.0 NaN 4 5 2 NaN 2.0 6 3
Обратите внимание, продажи велосипедов в первом и третьем месяце равны NaN — расшифровывается как Not a Number. Так Pandas помечает отсутствующие значения.
Теперь разберем, как загружать данные из файлов. Чаще всего данные хранятся в экселевских таблицах или csv-, tsv- файлах.
Экселевские таблицы читаются с помощью команды pd.read_excel() . Параметрами нужно передать адрес файла на компьютере и название листа, который нужно прочитать. Команда работает как с xls, так и с xlsx:
> pd.read_excel('file.xlsx', sheet_name='Sheet1')
Файлы формата csv и tsv — это текстовые файлы, в которых данные отделены друг от друга запятыми или табуляцией:
# CSV month,customers,sales feb,10,200 # TSV month\tcustomers\tsales feb\t10\t200
Оба читаются с помощью команды .read_csv() , символ табуляции передается параметром sep (от англ. separator — разделитель):
> pd.read_csv('file.csv') > pd.read_csv('file.tsv', sep='\t')
При загрузке можно назначить столбец, который будет индексом. Представьте, что мы загружаем таблицу с заказами. У каждого заказа есть свой уникальный номер, Если назначим этот номер индексом, сможем выгружать данные командой df[order_id] . Иначе придется писать фильтр df[df[‘id’] == order_id ] .
О том, как получать данные из датафреймов, я расскажу в одном из следующих разделов. Чтобы назначить колонку индексом, добавим в команду read_csv() параметр index_col , равный названию нужной колонки:
> pd.read_csv('file.csv', index_col='id')
После загрузки данных в датафрейм, хорошо бы их исследовать — особенно, если они вам незнакомы.
Исследуем загруженные данные
Представим, что мы анализируем продажи американского интернет-магазина. У нас есть данные о заказах и клиентах. Загрузим файл с продажами интернет-магазина в переменную orders . Раз загружаем заказы, укажем, что колонка id пойдет в индекс:
> orders = pd.read_csv('orders.csv', index_col='id')
Расскажу о четырех атрибутах, которые есть у любого датафрейма: .shape , .columns , .index и .dtypes .
.shape показывает, сколько в датафрейме строк и колонок. Он возвращает пару значений (n_rows, n_columns) . Сначала идут строки, потом колонки.
> orders.shape (5009, 5)
В датафрейме 5009 строк и 5 колонок.
Окей, масштаб оценили. Теперь посмотрим, какая информация содержится в каждой колонке. С помощью .columns узнаем названия колонок:
> orders.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales'], dtype='object')
Теперь видим, что в таблице есть дата заказа, метод доставки, номер клиента и выручка.
С помощью .dtypes узнаем типы данных, находящихся в каждой колонке и поймем, надо ли их обрабатывать. Бывает, что числа загружаются в виде текста. Если мы попробуем сложить две текстовых значения ‘1’ + ‘1’ , то получим не число 2, а строку ’11’ :
> orders.dtypes order_date object ship_mode object customer_id object sales float64 dtype: object
Тип object — это текст, float64 — это дробное число типа 3,14.
C помощью атрибута .index посмотрим, как называются строки:
> orders.index Int64Index([100006, 100090, 100293, 100328, 100363, 100391, 100678, 100706, 100762, 100860, . 167570, 167920, 168116, 168613, 168690, 168802, 169320, 169488, 169502, 169551], dtype='int64', name='id', length=5009)
Ожидаемо, в индексе датафрейма номера заказов: 100762, 100860 и так далее.
В колонке sales хранится стоимость каждого проданного товара. Чтобы узнать разброс значений, среднюю стоимость и медиану, используем метод .describe() :
> orders.describe() sales count 5009.0 mean 458.6 std 954.7 min 0.6 25% 37.6 50% 152.0 75% 512.1 max 23661.2
Наконец, чтобы посмотреть на несколько примеров записей датафрейма, используем команды .head() и .sample() . Первая возвращает 6 записей из начала датафрейма. Вторая — 6 случайных записей:
> orders.head() order_date ship_mode customer_id sales id 100006 2014-09-07 Standard DK-13375 377.970 100090 2014-07-08 Standard EB-13705 699.192 100293 2014-03-14 Standard NF-18475 91.056 100328 2014-01-28 Standard JC-15340 3.928 100363 2014-04-08 Standard JM-15655 21.376
Получив первое представление о датафреймах, теперь обсудим, как доставать из него данные.
Получаем данные из датафреймов
Данные из датафреймов можно получать по-разному: указав номера колонок и строк, использовав условные операторы или язык запросов. Расскажу подробнее о каждом способе.
Указываем нужные строки и колонки
Продолжаем анализировать продажи интернет-магазина, которые загрузили в предыдущем разделе. Допустим, я хочу вывести столбец sales . Для этого название столбца нужно заключить в квадратные скобки и поставить после них названия датафрейма: orders[‘sales’] :
> orders['sales'] id 100006 377.970 100090 699.192 100293 91.056 100328 3.928 100363 21.376 100391 14.620 100678 697.074 100706 129.440 .
Обратите внимание, результат команды — новый датафрейм с таким же индексом.
Если нужно вывести несколько столбцов, в квадратные скобки нужно вставить список с их названиями: orders[[‘customer_id’, ‘sales’]] . Будьте внимательны: квадратные скобки стали двойными. Первые — от датафрейма, вторые — от списка:
> orders[['customer_id', 'sales']] customer_id sales id 100006 DK-13375 377.970 100090 EB-13705 699.192 100293 NF-18475 91.056 100328 JC-15340 3.928 100363 JM-15655 21.376 100391 BW-11065 14.620 100363 KM-16720 697.074 100706 LE-16810 129.440 .
Перейдем к строкам. Их можно фильтровать по индексу и по порядку. Например, мы хотим вывести только заказы 100363, 100391 и 100706, для этого есть команда .loc[] :
> show_these_orders = ['100363', '100363', '100706'] > orders.loc[show_these_orders] order_date ship_mode customer_id sales id 100363 2014-04-08 Standard JM-15655 21.376 100363 2014-04-08 Standard JM-15655 21.376 100706 2014-12-16 Second LE-16810 129.440
А в другой раз бывает нужно достать просто заказы с 1 по 3 по порядку, вне зависимости от их номеров в таблицемы. Тогда используют команду .iloc[] :
> show_these_orders = [1, 2, 3] > orders.iloc[show_these_orders] order_date ship_mode customer_id sales id 100090 2014-04-08 Standard JM-15655 21.376 100293 2014-04-08 Standard JM-15655 21.376 100328 2014-12-16 Second LE-16810 129.440
Можно фильтровать датафреймы по колонкам и столбцам одновременно:
> columns = ['customer_id', 'sales'] > rows = ['100363', '100363', '100706'] > orders.loc[rows][columns] customer_id sales id 100363 JM-15655 21.376 100363 JM-15655 21.376 100706 LE-16810 129.440 .
Часто вы не знаете заранее номеров заказов, которые вам нужны. Например, если задача — получить заказы, стоимостью более 1000 рублей. Эту задачу удобно решать с помощью условных операторов.
Если — то. Условные операторы
Задача: нужно узнать, откуда приходят самые большие заказы. Начнем с того, что достанем все покупки стоимостью более 1000 долларов:
> filter_large = orders['sales'] > 1000 > orders.loc[filter_slarge] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 102673 2014-11-01 Standard KH-16630 1044.440 102988 2014-04-05 Second GM-14695 4251.920 103100 2014-12-20 First AB-10105 1107.660 103310 2014-05-10 Standard GM-14680 1769.784 .
Помните, в начале статьи я упоминал, что в сериях все операции применяются по-элементно? Так вот, операция orders[‘sales’] > 1000 идет по каждому элементу серии и, если условие выполняется, возвращает True . Если не выполняется — False . Получившуюся серию мы сохраняем в переменную filter_large .
Вторая команда фильтрует строки датафрейма с помощью серии. Если элемент filter_large равен True , заказ отобразится, если False — нет. Результат — датафрейм с заказами, стоимостью более 1000 долларов.
Интересно, сколько дорогих заказов было доставлено первым классом? Добавим в фильтр ещё одно условие:
> filter_large = df['sales'] > 1000 > filter_first_class = orders['ship_mode'] == 'First' > orders.loc[filter_large & filter_first_class] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 .
Логика не изменилась. В переменную filter_large сохранили серию, удовлетворяющую условию orders[‘sales’] > 1000 . В filter_first_class — серию, удовлетворяющую orders[‘ship_mode’] == ‘First’ .
Затем объединили обе серии с помощью логического ‘И’: filter_first_class & filter_first_class . Получили новую серию той же длины, в элементах которой True только у заказов, стоимостью больше 1000, доставленных первым классом. Таких условий может быть сколько угодно.
Язык запросов
Еще один способ решить предыдущую задачу — использовать язык запросов. Все условия пишем одной строкой ‘sales > 1000 & ship_mode == ‘First’ и передаем ее в метод .query() . Запрос получается компактнее.
> orders.query('sales > 1000 & ship_mode == First') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 .
Отдельный кайф: значения для фильтров можно сохранить в переменной, а в запросе сослаться на нее с помощью символа @: sales > @sales_filter .
> sales_filter = 1000 > ship_mode_filter = 'First' > orders.query('sales > @sales_filter & ship_mode > @ship_mode_filter') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 .
Разобравшись, как получать куски данных из датафрейма, перейдем к тому, как считать агрегированные метрики: количество заказов, суммарную выручку, средний чек, конверсию.
Считаем производные метрики
Задача: посчитаем, сколько денег магазин заработал с помощью каждого класса доставки. Начнем с простого — просуммируем выручку со всех заказов. Для этого используем метод .sum() :
> orders['sales'].sum() 2297200.8603000003
Добавим класс доставки. Перед суммированием сгруппируем данные с помощью метода .groupby() :
> orders.groupby('ship_mode')['sales'].sum() ship_mode First 3.514284e+05 Same Day 1.283631e+05 Second 4.591936e+05 Standard 1.358216e+06
3.514284e+05 — научный формат вывода чисел. Означает 3.51 * 10 5 . Нам такая точность не нужна, поэтому можем сказать Pandas, чтобы округлял значения до сотых:
> pd.options.display.float_format = ''.format > orders.groupby('ship_mode')['sales'].sum() ship_mode First 351,428.4 Same Day 128,363.1 Second 459,193.6 Standard 1,358,215.7
Другое дело. Теперь видим сумму выручки по каждому классу доставки. По суммарной выручке неясно, становится лучше или хуже. Добавим разбивку по датам заказа:
> orders.groupby(['ship_mode', 'order_date'])['sales'].sum() ship_mode order_date First 2014-01-06 12.8 2014-01-11 9.9 2014-01-14 62.0 2014-01-15 149.9 2014-01-19 378.6 2014-01-26 152.6 .
Видно, что выручка прыгает ото дня ко дню: иногда 10 долларов, а иногда 378. Интересно, это меняется количество заказов или средний чек? Добавим к выборке количество заказов. Для этого вместо .sum() используем метод .agg() , в который передадим список с названиями нужных функций.
> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum', 'count']) sum count ship_mode order_date First 2014-01-06 12.8 1 2014-01-11 9.9 1 2014-01-14 62.0 1 2014-01-15 149.9 1 2014-01-19 378.6 1 2014-01-26 152.6 1 .
Ого, получается, что это так прыгает средний чек. Интересно, а какой был самый удачный день? Чтобы узнать, отсортируем получившийся датафрейм: выведем 10 самых денежных дней по выручке:
> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum']).sort_values(by='sum', ascending=False).head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6
Команда разрослась, и её теперь неудобно читать. Чтобы упростить, можно разбить её на несколько строк. В конце каждой строки ставим обратный слеш \ :
> orders \ . .groupby(['ship_mode', 'order_date'])['sales'] \ . .agg(['sum']) \ . .sort_values(by='sum', ascending=False) \ . .head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6
В самый удачный день — 18 марта 2014 года — магазин заработал 27 тысяч долларов с помощью стандартного класса доставки. Интересно, откуда были клиенты, сделавшие эти заказы? Чтобы узнать, надо объединить данные о заказах с данными о клиентах.
Объединяем несколько датафреймов
До сих пор мы смотрели только на таблицу с заказами. Но ведь у нас есть еще данные о клиентах интернет-магазина. Загрузим их в переменную customers и посмотрим, что они собой представляют:
> customers = pd.read_csv('customers.csv', index='id') > customers.head() name segment state city id CG-12520 Claire Gute Consumer Kentucky Henderson DV-13045 Darrin Van Huff Corporate California Los Angeles SO-20335 Sean O'Donnell Consumer Florida Fort Lauderdale BH-11710 Brosina Hoffman Consumer California Los Angeles AA-10480 Andrew Allen Consumer North Carolina Concord
Мы знаем тип клиента, место его проживания, его имя и имя контактного лица. У каждого клиента есть уникальный номер id . Этот же номер лежит в колонке customer_id таблицы orders . Значит мы можем найти, какие заказы сделал каждый клиент. Например, посмотрим, заказы пользователя CG-12520 :
> cust_filter = 'CG-12520' > orders.query('customer_id == @cust_filter') order_date ship_mode customer_id sales id CA-2016-152156 2016-11-08 Second CG-12520 993.90 CA-2017-164098 2017-01-26 First CG-12520 18.16 US-2015-123918 2015-10-15 Same Day CG-12520 136.72
Вернемся к задаче из предыдущего раздела: узнать, что за клиенты, которые сделали 18 марта заказы со стандартной доставкой. Для этого объединим таблицы с клиентами и заказами. Датафреймы объединяют с помощью методов .concat() , .merge() и .join() . Все они делают одно и то же, но отличаются синтаксисом — на практике достаточно уметь пользоваться одним из них.
Покажу на примере .merge() :
> new_df = pd.merge(orders, customers, how='inner', left_on='customer_id', right_index=True) > new_df.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales', 'name', 'segment', 'state', 'city'], dtype='object')
В .merge() я сначала указал названия датафреймов, которые хочу объединить. Затем уточнил, как именно их объединить и какие колонки использовать в качестве ключа.
Ключ — это колонка, связывающая оба датафрейма. В нашем случае — номер клиента. В таблице с заказами он в колонке customer_id , а таблице с клиентами — в индексе. Поэтому в команде мы пишем: left_on=’customer_id’, right_index=True .
Решаем задачу
Закрепим полученный материал, решив задачу. Найдем 5 городов, принесших самую большую выручку в 2016 году.
Для начала отфильтруем заказы из 2016 года:
> orders_2016 = orders.query("order_date >= '2016-01-01' & order_date orders_2016.head() order_date ship_mode customer_id sales id 100041 2016-11-20 Standard BF-10975 328.5 100083 2016-11-24 Standard CD-11980 24.8 100153 2016-12-13 Standard KH-16630 63.9 100244 2016-09-20 Standard GM-14695 475.7 100300 2016-06-24 Second MJ-17740 4,823.1
Город — это атрибут пользователей, а не заказов. Добавим информацию о пользователях:
> with_customers_2016 = pd.merge(customers, orders_2016, how='inner', left_index=True, right_on='customer_id')
Cруппируем получившийся датафрейм по городам и посчитаем выручку:
> grouped_2016 = with_customers_2016.groupby('city')['sales'].sum() > grouped_2016.head() city Akron 1,763.0 Albuquerque 692.9 Amarillo 197.2 Arlington 5,672.1 Arlington Heights 14.1 Name: sales, dtype: float64
Отсортируем по убыванию продаж и оставим топ-5:
> top5 = grouped_2016.sort_values(ascending=False).head(5) > print(top5) city New York City 53,094.1 Philadelphia 39,895.5 Seattle 33,955.5 Los Angeles 33,611.1 San Francisco 27,990.0 Name: sales, dtype: float64
Возьмите данные о заказах и покупателях и посчитайте:
- Сколько заказов, отправлено первым классом за последние 5 лет?
- Сколько в базе клиентов из Калифорнии?
- Сколько заказов они сделали?
- Постройте сводную таблицу средних чеков по всем штатам за каждый год.
Через некоторое время выложу ответы в Телеграме. Подписывайтесь, чтобы не пропустить ответы и новые статьи.
Кстати, большое спасибо Александру Марфицину за то, что помог отредактировать статью.
Столбец Unnamed в датафрейме Pandas
Довольно частая проблема, с которой может встретиться начинающий аналитик или питонист при работе с Pandas — это появление столбца Unnamed при чтении какой-то структуры в датафрейм. В этой короткой заметке пишу о том, почему это происходит и как победить проблему.
Все дело в индексе по умолчанию при чтении или записи .csv файла!
Формируя дата-фрейм из какого-либо источника данных, необходимо не забывать сохранять его без индекса, вот так:
df.to_csv('c:/test.csv', index=False) pd.read_csv('c:/test.csv')
a b c 0 1 1 1 1 2 2 2 2 3 3 3
Если этого не сделать, при сохранении будет добавлен «безымянный» индекс по умолчанию:
df.to_csv('c:/test.csv') pd.read_csv('c:/test.csv')
Unnamed: 0 a b c 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3
И тогда с этим придется бороться при чтении, вот так:
pd.read_csv('c:/test.csv', index_col=0)
a b c 0 1 1 1 1 2 2 2 2 3 3 3
Либо путем выкидывания столбца inplace:
this = pd.read_csv('c:/test.csv') this.drop(['Unnamed: 0'], axis=1, inplace=True) this
a b c 0 1 1 1 1 2 2 2 2 3 3 3
Все статьи с тегом preprocessing
- Обработка пропусков в Pandas (25 Jul 2020)
- Столбец Unnamed в датафрейме Pandas (18 Apr 2020)
- Аргументы функций в Python 3.x. Шпаргалка (31 Mar 2020)
- Как преобразовать вложенные структуры JSON в массив Pandas на Python (30 Mar 2020)
- Подготовка и оптимизация данных для задач машинного обучения (04 Mar 2020)
- Подготовка данных: кодирование категориальных признаков (28 Oct 2019)
- Особенности препроцессинга данных в scikit-learn (08 Oct 2019)
Анализ текстовых документов для извлечения структурных связей с другими документами
В данной заметке изложен прототип идеи поиска связанности текстовых фрагментов на основе структуры повествования. Данные для исследования В качестве данных.
Фреймворки Networkx и Snap для построения графов. Сравнение
Какие задачи, где и когда решают фреймворки для построения графов? Есть целый класс проблем, связанных с изучением графов. Это моделирование.
Этот проект поддерживается KonstantinKlepikov
Конспект про Pandas
Упражнения — https://github.com/guipsamora/pandas_exercises (видео разбор этих упражнений — [https://www.youtube.com/watch?v=pu3IpU937xs&list=PLgJhDSE2ZLxaY_DigHeiIDC1cD09rXgJv](https://www.youtube.com/watch?v=pu3IpU937xs&list=PLgJhDSE2ZLxaY_DigHeiIDC1cD09rXgJv]
Series — Pandas
В Pandas есть две главные структуры для хранения данных:
- Series
- Dataframe
В jupyter можно посмотреть справку с помощью вопросительного знака
pd.Series?
Объект Series сильно напоминает колонку в Excel. Есть:
- данные
- индекс
- название
s1 = pd.Series(data=[5,3,4]) s2 = pd.Series([5,3,4]) s3 = pd.Series(dtype='object') # пустой s4 = pd.Series( np.random.randn(5), index=['a','b','c','d','e'], name="example")
Обычно Series и Dataframe не создаются руками, а загружаются откуда-то извне, а вот различные преобразования Series и Dataframe использются очень часто.
Поле name в Series может использоваться для того чтобы назвать колонку в случае создания Dataframe из Series, пример:
df = pd.DataFrame(pd.Series([1,2,3],name="sample"))
Пример broadcasting. Указано только одно число, но оно будет размещено во всех позициях Series:
s = pd.Series(5, index=['a', 'c', 'd', 'e', 'f'])
get actual underlying data:
s.values
Получить одно значение
s[0] # получить первый элемент
получить элемент по индексу: