Вычисление вероятности
Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.
Вероятность
Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…
Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться.
Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов.
Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат.
Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом.
По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив.
Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:
- выпадет орел;
- выпадет решка.
Эти два события образуют множество элементарных событий.
Множество элементарных событий — множество всех возможных результатов случайного эксперимента.
В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации.
Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран.
Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности.
Вероятность — отношение количества благоприятных событий к количеству всех возможных событий.
Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу.
Вероятность можно обозначить, как P(x), где х — некоторое событие.
Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.
Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.
Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна \(P = \frac = 1\), то есть мы точно выиграем спор.
Однако вероятность не так проста, и даже здесь подготовила ловушку.
Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%.
Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?
Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна
\(\frac = 0,35\)
Выразим в процентах:
0,35 * 100% = 35%
Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ.
Ответ: 0,35
Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой.
Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.
Равновозможные и противоположные события
Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными.
Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие.
Вероятности появления событий равны.
Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий.
Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них.
В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий.
Мы подбросили монету и выпал орел. Следовательно, не выпала решка.
А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными.
Противоположные события — такие события, если при не наступлении одного обязательно наступает второе.
Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как \(\overline\).
Заметим, что вероятность события A равняется 12, как и вероятность события \(\overline\). Чему равна их сумма?
Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1.
Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить.
Объединение и пересечение событий
Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим?
Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий.
В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег.
Объединение событий обозначается знаком \(\cup\). Объединение событий А и В можно записать как \(A \cup B\).
Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?
Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям.
Пересечение событий обозначается знаком \(\cap\). Пересечение событий А и В можно записать как \(A \cap B\).
Несовместные и совместные события
Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.
Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно.
Несовместные события — такие события, появление одного из которых исключает появление другого.
Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?
Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности.
Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.
Сформулируем определение суммы вероятностей двух несовместных событий.
Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:
\(P(A \cup B) = P(A) + P(B)\)
Если существуют несовместные события, то существуют и совместные.
Совместные события — события, наступление одного из которых не исключает наступления другого.
В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят? Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет.
Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”.
Найдем вероятность события А: \(\frac\).
Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна \(\frac = \frac\)
Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А.
Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги.
А нужно получить вот такую картину:
Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок.
Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:
\(P(A \cup B) = P(A) + P(B) — P(A \cap B)\)
В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике.
Независимые и зависимые события
Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем.
Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна \(\frac = 0,95\).
Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?
Ответим на вопрос: зависят ли булочки друг от друга?
Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми.
Независимые события — такие события, появление одного из которых не зависит от появления другого события.
Определим вероятность независимых событий.
Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95.
А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:
\(P(A \cap B) = P(A) * P(B)\)
Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025.
В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”.
Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой.
Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого.
Но если автоматы стоят рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого.
Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?
Нужная последовательность может быть в двух случаях:
- сначала вытащат фиолетовый кубик и потом снова фиолетовый;
- сначала вытащат оранжевый кубик, а потом фиолетовый.
Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна \(\frac\). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые.
Вероятность вытащить во второй раз фиолетовый кубик равна \(\frac * \frac = \frac = \frac\).
Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна \(\frac\). В мешке останется шесть кубиков, пять из которых будут фиолетовыми.
Вероятность вытащить во второй раз фиолетовый кубик будет уже равна \(\frac * \frac = \frac = \frac\).
В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы.
Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.
Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А.
Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.
Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность.
Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:
\(P(A \cap B) = P(A) * P(B | A)\)
Формула Бернулли
Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?
Пусть p — вероятность, что выпадет цифра 5. Тогда \(p = \frac\).
Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. \(q = \frac\).
Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k.
Чтобы решить задачу, нужно воспользоваться формулой Бернулли.
Множитель \(C_n^k\) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики».
Решим задачу, подставив значения в формулу:
Фактчек
- Вероятность — отношение количества благоприятных событий к количеству всех возможных событий.
- События могут быть противоположными. Противоположные события — такие события, если при не наступлении одного обязательно наступает второе.
- События можно разделить на совместные и несовместные. Несовместные события — такие события, появление одного из которых исключает появление другого. Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей: P(A \(\cup) B) = P(A) + P(B). Совместные события — события, наступление одного из которых не исключает наступления другого. Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения: P(A \cup B) = P(A) + P(B) — P(A \cap B).
- События также можно разделить на независимые и зависимые. Независимые события — такие события, появление одного из которых не зависит от появления другого события. Вероятность независимых событий можно найти по формуле P(A \cap B) = P(A) * P(B). Зависимые события — это события, появление одного из которых зависит от появления другого. Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило. P(A \cap B) = P(A) * P(B | A).
- Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А.
Проверь себя
Задание 1.
Какие события являются несовместными?
- Подбрасывание монетки.
- Брак батареек в одной упаковке.
- “Миша идет” и “Миша стоит”.
- Случайное вытаскивание конфет из вазы.
Задание 2.
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?
Задание 3.
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?
Задание 4.
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут.
Задание 5.
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой.
Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1
Задачи на классическое определение вероятности.
Примеры решений
На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики. Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике. Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.
Вспоминаем классику жанра:
Вероятность наступления события в некотором испытании равна отношению , где:
– общее число всех равновозможных, элементарных исходов данного испытания, которые образуют полную группу событий;
– количество элементарных исходов, благоприятствующих событию .
И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.
Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:
В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.
Решение: важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов.
Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:
– извлечение любого шара одинаково возможно (равновозможность исходов), при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров).
Таким образом, общее число исходов:
Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.
Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей. Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара ». В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!
С другими пунктами аналогично, рассмотрим следующие события:
– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.
Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:
Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу. В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .
Проверим, так ли это: , в чём и хотелось убедиться.
Ответ:
В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения:
Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.
Ответ:
Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.
В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?
Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.
В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:
Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.
Примечание: ноль – это чётное число (делится на 2 без остатка)
Решение: сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов. То есть, при оформлении решения просто записываем все возможные комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90
и подсчитываем их – всего: 10 исходов.
Благоприятствующий исход один: верный номер.
По классическому определению:
– вероятность того, что абонент наберёт правильный номер
Ответ: 0,1
Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.
Продвинутая задача для самостоятельного решения:
Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?
Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока
Решение и ответ внизу.
Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество):
Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:
а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.
Решение: найдём общее количество исходов:
способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций, всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:
– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.
Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».
а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:
Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.
б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:
Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.
в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.
Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие: – выпадет 2 или 10 или 11 или 12 очков.
В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:
Итого: 7 благоприятствующих исходов.
По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.
Далее пользуемся тем, что сумма вероятностей противоположных событий равна единице:
– вероятность того, что выпадет от 3 до 9 очков включительно.
Особо щепетильные люди могут перечислить все 29 пар, выполнив тем самым проверку.
Ответ:
В следующей задаче повторим таблицу умножения:
Найти вероятность того, что при броске двух игральных костей произведение очков:
а) будет равно семи;
б) окажется не менее 20;
в) будет чётным.
Краткое решение и ответ в конце урока.
Рассмотренная задача встречается и в других вариациях, несколько дополнительных примеров по сабжу можно найти в соответствующем сборнике на странице Готовые решения по высшей математике.
Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы. И снова эпичная задача про лифт:
В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:
а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.
Следует отметить, что случайность здесь имеет место быть лишь с точки зрения стороннего наблюдателя (т.к. человек обычно едет на вполне определённый этаж).
Решение: вычислим общее количество исходов: способами может выйти из лифта 1-й пассажир и способами – 2-й пассажир и способами – третий пассажир. По правилу умножения комбинаций: возможных исходов. То есть, каждый этаж выхода 1-го человека может комбинироваться с каждым этажом выхода 2-го человека и с каждым этажом выхода 3-го человека.
Второй способ основан на размещениях с повторениями:
– кому как понятнее.
а) Рассмотрим событие: – пассажиры выйдут на разных этажах. Вычислим количество благоприятствующих исходов:
способами могут выйти 3 пассажира на разных этажах. Рассуждения по формуле проведите самостоятельно.
По классическому определению:
Теперь подумаем вот над какой вещью: пункт «бэ» достаточно сложен (см. Задачу 11 урока по комбинаторике), и значительная часть студентов, которые не в теме, просто не справится с этим пунктом. Но только не те, которые прочитают пару следующих абзацев!
в) Рассмотрим событие: – пассажиры выйдут на одном этаже. Данному событию благоприятствуют исходов и по классическому определению, соответствующая вероятность: .
Заходим с чёрного хода:
б) Рассмотрим событие: – два человека выйдут на одном этаже (и, соответственно, третий – на другом).
События образуют полную группу (считаем, что в лифте никто не уснёт и лифт не застрянет =)), а значит, .
В результате, искомая вероятность:
Таким образом, теорема о сложении вероятностей событий, образующих полную группу, может быть не только удобной, но и стать самой настоящей палочкой-выручалочкой!
Ответ:
Когда получаются большие дроби, то хорошим тоном будет указать их приближенные десятичные значения. Обычно округляют до 2-3-4 знаков после запятой.
Поскольку события пунктов «а», «бэ», «вэ» образуют полную группу, то есть смысл выполнить контрольную проверку, причём, лучше с приближенными значениями:
, что и требовалось проверить
Иногда по причине погрешности округлений может получиться 0,9999 либо 1,0001, в этом случае одно из приближенных значений следуют «подогнать» так, чтобы в сумме нарисовалась «чистая» единица.
Подбрасывается 10 монет. Найти вероятность того, что:
а) на всех монетах выпадет орёл;
б) на 9 монетах выпадет орёл, а на одной – решка;
в) орёл выпадет на половине монет.
Краткое решение и ответ в конце урока.
Ничего страшного, если не получаются какие-то задачи или отдельные пункты – главное, стремитесь РАССУЖДАТЬ, ДУМАЙТЕ (пусть и не всегда успешно). В теории вероятностей плохо работает принцип «если дано то-то, то решать нужно так-то». И следующий пример – хорошее тому подтверждение:
На семиместную скамейку случайным образом рассаживается 7 человек. Какова вероятность того, что два определённых человека окажутся рядом?
Решение: с общим количеством исходов проблем не возникает:
способами могут рассесться 7 человек на скамейке.
Но вот как подсчитать количество благоприятствующих исходов? Тривиальные формулы не подходят и единственный путь – это логические рассуждения. Сначала рассмотрим ситуацию, когда Саша и Маша оказались рядом на левом краю скамейки:
Очевидно, что порядок имеет значение: слева может сидеть Саша, справа Маша и наоборот. Но это ещё не всё – для каждого из этих двух случаев остальные люди могут рассесться на свободных местах способами. Выражаясь комбинаторно, Сашу и Машу можно переставить на соседних местах способами и для каждой такой перестановки других людей можно переставить способами.
Таким образом, по правилу умножения комбинаций, выходит благоприятствующих исходов.
Но и это ещё не всё! Перечисленные факты справедливы для каждой пары соседних мест:
Интересно отметить, что если скамейку «скруглить» (соединяя левое и правое место), то образуется дополнительная, седьмая пара соседних мест. Но не будем отвлекаться. Согласно тому же принципу умножения комбинаций, получаем окончательное количество благоприятствующих исходов:
По классическому определению:
– вероятность того, что два определённых человека окажутся рядом.
Ответ:
Советую всегда снабжать подобные задачи схематическим рисунком, поскольку «голые» словесные комментарии чреваты ошибками – даже если и не запутаетесь, то можете запросто обсчитаться.
Один из читателей предложил следующее решение: способами можно выбрать места для двух определённых людей (общее число исходов), и благоприятствующее число исходов рассчитывается из тех же соображений, что в решении выше: , тогда: .
Такой вариант, в принципе, допустИм, но не совсем корректен, так как классическое определение должно учитывать все элементарные исходы (взаимное расположение семи человек). Предложенное решение больше подойдёт для задачи, где не принимаются во внимание другие люди, например: «Два человека независимо друг от друга покупают два билета в пустой ряд из 7 мест. Какова вероятность того, что они окажутся рядом?» – здесь оставшиеся 5 мест могут вообще остаться не занятыми.
Пожалуй, самая трудная задача урока:
На шахматную доску из 64 клеток ставят наудачу две ладьи, белого и чёрного цвета. С какой вероятностью они не будут «бить» друг друга?
Справка: шахматная доска имеет размер клеток; черная и белая ладьи «бьют» друг друга, когда располагаются на одной горизонтали или на одной вертикали
Обязательно выполните схематический чертёж доски, а ещё лучше, если неподалёку есть шахматы. Одно дело рассуждения на бумаге, и совсем другое – когда расставляешь фигуры собственными руками. И ещё тут почему-то часто начинают рассуждать о порядке выставления ладей – здесь это не имеет значения, ладьи могут выставляться в каком угодно порядке, хоть одновременно – имеет значение их взаимное расположение.
Моя версия решения в конце урока. Говорю так, потому что, возможно, существуют другие способы. И они действительно существуют! – прошло совсем немного времени со дня публикации статьи, и один из посетителей сайта прислал более короткое и рациональное решение, которое тоже приведено ниже. Я очень рад, что эти уроки превращаются в самую настоящую творческую лабораторию!
В заключительной части статьи рассмотрим очень распространённый тип задач на классическое определение вероятности, который встречается чуть ли не в половине случаев:
Какова вероятность того, что в четырех сданных картах будет один туз и один король?
Решение: коль скоро неизвестный автор умолчал о колоде, будем считать, что в ней 36 карт. Ну а зачем нам больше? =)
Вычислим общее количество исходов. Сколькими способами можно извлечь 4 карты из колоды? Наверное, все поняли, что речь идёт о количестве сочетаний:
способами можно выбрать 4 карты из колоды.
Теперь считаем благоприятствующие исходы. По условию, в выборке из 4 карт должен быть один туз, один король и, о чём не сказано открытым текстом, – две другие карты:
способами можно извлечь одного туза;
способами можно выбрать одного короля.
Исключаем из рассмотрения тузов и королей: 36 – 4 – 4 = 28
способами можно извлечь две другие карты.
По правилу умножения комбинаций:
способами можно извлечь искомую комбинацию карт (одного туза и одного короля и две другие карты).
Прокомментирую комбинационный смысл записи другим способом:
каждый туз комбинируется с каждым королем и с каждой возможной парой других карт.
По классическому определению:
– вероятность того, что среди четырех сданных карт будет один туз и один король.
Если хватает времени и терпения, максимально сокращайте большие дроби.
Ответ:
Более простая задача для самостоятельного решения:
В ящике находится 15 качественных и 5 бракованных деталей. Наудачу извлекаются 2 детали. Найти вероятность того, что:
а) обе детали будут качественными;
б) одна деталь будет качественной, а одна – бракованной;
в) обе детали бракованны.
События перечисленных пунктов образуют полную группу, поэтому проверка здесь напрашивается сама собой. Краткое решение и ответ в конце урока. А вообще, всё самое интересное только начинается!
Следующая задача очень распространена и актуальна для многих читателей. Когда она встречается, то я всегда думаю: «чего же он так много выучил-то?!». Поэтому сделаю пример более реалистичным =):
Студент знает ответы на 25 экзаменационных вопросов из 60. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на два из трёх вопросов?
Решение: итак, расклад таков: всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 – 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:
способами можно выбрать 3 вопроса из 60 (общее количество исходов).
Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:
способами можно выбрать 2 «хороших» вопроса и один «плохой»;
способами можно выбрать 3 «хороших» вопроса.
По правилу сложения комбинаций:
способами можно выбрать благоприятствующую для сдачи экзамена комбинацию 3 вопросов (без разницы с двумя или тремя «хорошими» вопросами).
По классическому определению:
– вероятность того, что студент сдаст экзамен.
Ответ:
Да, конечно, «не фонтан», но и не всё так безнадёжно, к тому же всегда есть шансы что-нибудь родить и при ответе на «плохие» вопросы.
Популярная игра для самостоятельного исследования:
Игроку в покер сдаётся 5 карт. Найти вероятность того, что он получит:
а) пару десяток и пару валетов;
б) флеш (5 карт одной масти);
в) каре (4 карты одного номинала).
Какую из перечисленных комбинаций вероятнее всего получить?
! Внимание! Если в условии задан подобный вопрос, то на него необходимо дать ответ.
В противном случае задание с высокой вероятностью не зачтут.
Справка: в покер традиционно играют 52-карточной колодой, которая содержит карты 4 мастей номиналом от «двоек» до тузов.
Покер – игра самая что ни на есть математическая (кто играет, тот знает), в которой можно обладать заметным преимуществом перед менее квалифицированными соперниками. Хотя, по моему субъективному впечатлению, «звёзды» покера, «набившие» миллионные состояния, не столько расчётливы, сколько сверхобострённо чувствуют своих оппонентов. И это особый дар, который не относится к математике.
Хотел ещё разобрать 15-й задачей вероятность выигрыша в какую-нибудь из известных лотерей, но выкладки оказались достаточно сложными. В лотереях, которые я рассмотрел, фигурируют дополнительные условия и ограничения, словно специально призванные затруднить использование комбинаторных формул =) Впрочем, переживать не будем, поскольку на поставленный вопрос быстро и эффективно ответит статистическое определение вероятности.
Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности. Как я уже отмечал, «набивка руки» тоже имеет значение!
Решения и ответы:
Задача 2: Решение: 30 – 5 = 25 холодильников не имеют дефекта.
По классическому определению:
– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ:
Задача 4: Решение: найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ:
Задача 6: Решение: найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.
а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.
б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:
Итого: 8
По классическому определению:
– искомая вероятность.
в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :
Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.
Задача 8: Решение: вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и … и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ:
Задача 10: Способ первый: вычислим общее количество исходов:
способами можно расставить двух ладей на доске.
Другой вариант оформления: способами можно выбрать две клетки шахматной доски и способами поставить белую и чёрную ладью в каждом из 2016 случаев. Таким образом, общее число исходов: .
Теперь подсчитаем исходы, в которых ладьи «бьют» друг друга. Рассмотрим 1-ю горизонталь. Очевидно, что фигуры можно расставить на ней произвольным образом, например, так:
Кроме того, ладей можно переставить. Придаём рассуждениям числовую форму: способами можно выбрать две клетки и способами переставить ладей в каждом из 28 случаев. Всего: возможных расположений фигур на горизонтали.
Короткая версия оформления: способами можно разместить белую и чёрную ладью на 1-й горизонтали.
Проведённые рассуждения справедливы для каждой горизонтали, поэтому количество комбинаций следует умножить на восемь: . Кроме того, аналогичная история справедлива для любой из восьми вертикалей. Вычислим итоговое количество расстановок, в которых фигуры «бьют» друг друга:
Тогда в оставшихся вариантах расстановки ладьи не будут «бить» друг друга:
4032 – 896 = 3136
По классическому определению вероятности:
– вероятность того, что наугад поставленные на доску белая и чёрная ладья не будут «бить» друг друга.
Способ второй: способами можно поставить на доску одну ладью и для каждого из этих 64 случаев другая ладья может выставлена на любую из свободных клеток (проанализируйте, что это рассуждение учитывает все расстановки белой и черной ладей). Таким образом, по правилу умножения комбинаций: – общее число исходов.
Для каждого из 64 способов расстановки одной ладьи она будет «бить» другую ладью, если последняя окажется на любой из 7 свободных клеток той же горизонтали или 7 свободных клеток той же вертикали (итого 14 клеток). Следовательно, существует расстановок ладей, в которых они «бьют» друг друга. По классическому определению вероятности:
– вероятность того, что наугад поставленные на доску белая и чёрная ладья будут «бить» друг друга.
Тогда вероятность противоположного события:
Ответ:
Задача 12: Решение: всего: 15 + 5 = 20 деталей в ящике. Вычислим общее число исходов:
способами можно извлечь 2 детали из ящика.
а) Рассмотрим событие: – обе извлечённые детали будут качественными.
способами можно извлечь 2 качественные детали.
По классическому определению вероятности:
б) Рассмотрим событие: – одна деталь будет качественной, а одна – бракованной.
способами можно извлечь 1 качественную деталь и 1 бракованную.
По классическому определению:
в) Рассмотрим событие: – обе извлечённые детали бракованны.
способами можно извлечь 2 бракованные детали.
По классическому определению:
Проверка: вычислим сумму вероятностей событий, образующих полную группу: , что и требовалось проверить.
Ответ:
Задача 14: Решение: найдём общее число исходов:
способами можно сдать 5 карт.
а) способами можно сдать две десятки;
способами можно сдать двух валетов;
Количество других карт в колоде: 52 – 4 – 4 = 44
способами можно сдать другую карту.
По правилу умножения комбинаций:
способами можно сдать 5 карт, среди которых будет пара десяток и пара валетов.
По классическому определению:
б) В колоде: 52 / 4 = 13 карт каждой масти.
способами можно сдать 5 карт какой-то одной из мастей.
По правилу сложения комбинаций:
способами можно сдать флеш (без разницы какой масти).
По классическому определению:
в) Четыре карты одного номинала можно сдать 13 способами (2222, 3333, 4444, …, КККК, ТТТТ). Кроме того, для каждого из этих 13 случаев пятую карту можно сдать способами. Таким образом, по теореме умножения комбинаций, каре можно сдать способами.
По классическому определению:
Ответ:
Из перечисленных комбинаций вероятнее всего получить флеш.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам,
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
Теория вероятностей
В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.
Больше задач – в статье «Задание 2 Профильного ЕГЭ по математике. Теория вероятностей».
Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.
Благоприятным мы называем исход, способствующий наступлению данного события.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность – величина положительная и не может быть больше единицы.
Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна
Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:
1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.
В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.
Просто применили определение вероятности.
2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.
Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Например, вы бросаете монету. «Выпал орел» и «выпала решка» — несовместные события.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
Вероятность выпадения числа, которое делится на 3,
Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?
Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.
Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же:
4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.
5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
Пусть Андрей первым занял место в группе (неважно, в какой). И, кроме него, осталось еще 25 человек, среди которых его друг Сергей. Сколько у Сергея шансов оказаться в той же группе, что и Андрей? В группе должно быть 13 человек, то есть Андрей и еще 12. Значит, вероятность того, что Сергей окажется в той же группе, что и Андрей, равна , то есть 0,48.
Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.
Лень разбираться самому?
Присоединяйся к мини-курсу по теории вероятностей
6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?
Начнем с числа возможных исходов. Если мы бросаем монету, возможных исходов два – орел или решка.
Бросим монету два раза (или две монеты одновременно, все равно). И вот уже 4 возможных исхода:
ОО
ОР
РО
РР
(буквой О обозначен выпавший «орел», буквой «р» — решка.
Каждый следующий бросок монеты увеличивает число возможных исходов в 2 раза (орел или решка).
Для 10 бросков монеты количество возможных исходов, очевидно, равно
По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.
Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.
Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков
Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.
Пронумеруем броски: 1,2,3…10.
Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.
Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…
Пронумеруем таким образом все благоприятные исходы.
12, 13, 14, 15, 16, 17, 18, 19, 1 10
23, 24, 25, 26, 27, 28, 29, 2 10
34, 35, 36, 37, 38, 39, 3 10
45, 46, 47, 48, 49, 4 10
56, 57, 58, 59, 5 10
9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.
Поделив на , получим, во сколько раз выпадение решки ровно 8 раз более вероятно, чем выпадение решки ровно 9 раз:
Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.
7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Изобразим все возможные исходы.
По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?
Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.
Вероятность того, что стекло с первой фабрики, равна 0,45.
Вероятность того, что стекло сделано на второй фабрике, равна 0,55.
Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.
Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.
Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна
Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.
Значит, вероятность купить бракованное стекло равна:
Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?
8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?
Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна
Если идти отвечать вторым, возможны два случая:
1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.
2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.
Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:
Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.
Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.
Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Теория вероятностей» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена: 05.10.2023
Теория вероятностей: как научиться предсказывать случайные события
Разбираем основные понятия, решаем задачи и делаем первый шаг на пути к карьере в data science.
Кадр: фильм «Сумерки. Сага. Затмение» / West Video
Дмитрий Зверев
Любитель научной фантастики и технологического прогресса. Хорошо сочетает в себе заумного технаря и утончённого гуманитария. Пишет про IT и радуется этому.
Продолжаем разбираться с математическими концепциями, на которых держится современное IT. Сегодня поговорим о теории вероятностей — разделе математики, который широко используется в машинном обучении, геймдеве, статистике и науке о данных.
Из этой статьи вы узнаете:
- Что такое теория вероятностей
- Какие понятия в неё входят
- Что такое алгебра событий
- По каким формулам она работает
- Как решать задачи по теории вероятностей
Что такое теория вероятностей
Теория вероятностей — это наука, которая изучает мир случайностей и пытается их предсказать. Здесь встречаются такие понятия, как «события» и «вероятности», у которых, в свою очередь, есть свои свойства и операции — о них мы поговорим чуть позже.
Проще всего продемонстрировать, как работает теория вероятностей, на примере подбрасывания монетки. В этом случае у нас есть два варианта: орёл или решка, а значит, шанс выпадения каждой из сторон одинаковый и составляет 50%.
Но как убедиться, что это действительно так? Например, я могу подбросить монетку десять раз, и мне магическим образом девять раз подряд выпадет орёл и один раз решка. Значит ли это, что шанс выпадения орла — 90%? Конечно, нет — и у этого есть научное объяснение.
Дело в том, что теория вероятностей рассматривает случайные события в рамках бесконечности. Иными словами, если мы будем подбрасывать монетку бесконечное количество раз, то шансы выпадения орла или решки будут приближаться к 50%.
В математике такая закономерность называется законом больших чисел, и этот закон — один из фундаментальных для data science. Фишка в том, что чем больше данных мы имеем на руках, тем точнее можно делать предсказания. Подробнее об этом читайте в статье «Математика для джунов».
Такая же логика работает и для других случайных явлений — например, шанс выпадания числа 5 на игральном кубике равен 1 к 6, а вероятность того, что молния ударит в одно и то же место дважды — примерно 1 к 500.
Теория вероятностей помогает нам предсказывать шанс возникновения различных событий, когда ответ не такой однозначный и на события влияет множество факторов.
Основные понятия
Мы упомянули слова «событие» и «вероятность», но не рассказали, что они вообще значат в контексте теории вероятностей. Давайте разбираться.
События
Событие — это всё, что может произойти, когда мы совершаем какое-то действие. Например, если мы бросаем монетку, то событие — это выпадение орла или решки. Чтобы обозначать события, используют заглавные буквы латинского алфавита. Например, для орла можем выбрать букву A, а для решки — B.
Существует много разных видов и классификаций событий, но в этой статье мы остановимся на основных четёрых:
- Достоверные — те, которые точно произойдут. Если бросить стакан на пол, то с вероятностью 100% он полетит вниз.
- Невозможные — те, которые никогда не произойдут. Если бросить тот же стакан на пол, то он никогда не полетит вверх (мораль: не стоит бросать стаканы на пол, если, конечно, вы не на МКС).
- Случайные — те, которые могут произойти, а могут и не произойти. Например, если мы бросаем игральный кубик, то не можем с уверенностью сказать, что выпадет число 2.
- Несовместимые — те, которые исключают друг-друга. Например, при подбрасывании монетки может выпасть либо орёл, либо решка — оба одновременно они выпасть не могут.
Если собрать все несовместимые события вместе, они будут называться полной группой событий. Это множество событий, одно из которых обязательно случится, если мы совершаем действие, а другие — не произойдут никогда. Например, когда мы бросаем игральный кубик, может выпасть только одна из сторон.
Вероятности
Вероятность — это число, которое обозначает шанс возникновения события. Например, вероятность выигрыша в лотерею может составлять 1 к 1 000 000.
Мы записывали значения вероятностей в процентах и отношениях, но математикам удобнее располагать их в диапазоне от 0 до 1. Если вероятность равна 0, то событие никогда не произойдёт, а если 1 — точно произойдёт. Всё, что посередине, — это случайные события.
Самый простой способ вычислить вероятность — поделить число благоприятных событий на общее число возможных событий. Например, если всего в колоде 36 карт, а мы хотим достать короля пик, то вероятность этого события равна 1/36, или 0,03. Если бы нас устроил любой из королей, то вероятность была бы равна 4/36 — то есть 0,1.
К формулам мы ещё вернёмся, а пока отметим, что вероятность — это не всегда точное предсказание, а лишь оценка шанса возникновения события. Как следует из закона больших чисел, если шанс выпадения орла и решки равен 50%, это не означает, что они будут выпадать по очереди.
Ещё вероятность может быть условной — или зависеть от другого события. Например, если мы хотим вытащить любой туз из колоды карт, шанс равен 4/36. Но если до этого кто-то уже вытащил одного туза, то вероятность будет равна 3/35. Это потому, что в колоде стало на одну карту меньше и количество благоприятных событий тоже уменьшилось.
С определениями закончили — теперь давайте узнаем, как событиями можно управлять.
Что такое алгебра событий
Когда мы считаем вероятности, нас может устраивать более чем один результат событий. Или другая ситуация — нам может быть важно, чтобы два события выполнялись вместе. В таких случаях на помощь приходит алгебра событий. Разбираемся, какие действия она позволяет совершать.
Дисклеймер: в этом разделе мы не рассматриваем вычитание и дополнение событий, потому что они довольно сложны для первого знакомства с теорией вероятностей. Возможно, скоро мы выпустим о них отдельную статью.
Сложение (объединение) событий
Сумма двух событий A + B — это сложное событие, которое произойдёт, если случится или событие A, или событие B, или оба одновременно.
Допустим, мы хотим вычислить вероятность выпадения на кубике стороны с числами 2 или 4. Обозначим событие «выпадение стороны 2» как A, а событие «выпадение стороны 4» как B. Так как у кубика всего шесть граней, вероятность выпадения каждой из этих сторон равна 1/6.
А так как нас интересует либо событие A, либо событие B, мы ищем сумму этих событий — A + B. Вычисляем соответствующие вероятности:
Получается, что шанс выпадения стороны 2 или 4 при броске кубика равен 2 к 6, или 1 к 3, или 33%.
Правило сложения можно применять не только к двум событиям, но и к любому их количеству. Например, событие A + B + C + D произойдёт, если случится хотя бы одно из событий A, B, C, D или одна из их комбинаций, такая как A и C или A, C и D.
Умножение (пересечение) событий
Произведение событий A и B — это событие A × B, которое произойдёт, если случится и событие A, и событие B.
Допустим, мы бросаем монетку два раза и хотим понять, каков шанс, что оба раза выпадет решка. Напомним, что вероятность выпадения решки — 1/2.
Обозначаем события: A — решка выпадает первый раз, B — решка выпадает второй раз. Считаем вероятности:
Получаем, что шанс выпадения решки два раза подряд — 25%.
Как в случае с суммой, произведение событий можно считать для любого количества разных событий. Давайте продолжим пример с монеткой — теперь мы хотим, чтобы она выпала четыре раза подряд.
Добавляем два новых обозначения: C — решка выпадает третий раз, D — решка выпадает четвёртый раз. Вероятности всё те же, считаем их произведение:
Ответ — шанс выпадения решки четыре раза подряд равен 1 к 16, или 6,25%.
Сложение совместимых событий
Когда мы говорили о сложении вероятностей, мы использовали несовместимые события, поскольку при броске кубика может выпасть только одна сторона (или ребро, если вам сильно повезёт).
Теперь, когда мы познали тонкости вероятностного умножения, можно разобраться с тем, как складывать совместимые события. В этом случае из суммы двух событий нужно просто вычесть их произведение. Формула выглядит так:
P (A + B) = P (A) + P (B) — P (A ⋅ B)
Примером такого сложения может быть выбор случайных чисел. Допустим, у нас есть набор чисел от 1 до 10 и мы хотим найти вероятность того, что выбранное число будет или нечётным, или делиться на 7 без остатка.
- Событие A — число нечётное. Вероятность выбрать именно его — 5/10.
- Событие B — число делится на 7 без остатка. Вероятность — 1/10.
Так как число 7 удовлетворяет обоим условиям, мы имеем дело с совместимыми событиями — то есть они могут происходить одновременно. Подключаем формулу: сначала находим сумму вероятностей, а потом вычитаем из неё вероятность пересечения. Внимание на экран:
Вуаля! Получается, что шанс выполнения одного из двух событий равен 11/20, или 55%.
На этом с алгеброй событий закончим и перейдём к более классическим формулам. Но не пугайтесь, мы всё подробно объясним.
Ещё несколько формул теории вероятностей
Для начала — универсальная формула. Выглядит она так:
Разберёмся, что значат все эти буквы:
- Функция P вычисляет вероятность того, что произойдёт событие, которое нас устраивает (A);
- n обозначает общее число возможных событий;
- m — число благоприятных исходов.
Например, попробуем вычислить по этой формуле вероятность выпадения решки:
Всё в порядке, формула работает.
Давайте усложним задачу: посчитаем вероятность того, что решка выпадет три раза. Для этого нужно разбить событие на несколько уникальных — например, выпадение решки при первом, втором и третьем бросках. Обозначим эти события как B, C и D.
Так как эти события зависимы друг от друга, нам нужно их перемножить — для этого подставляем в нашу формулу числа:
Всё верно — вероятность посчитали правильно.
Из этой формулы можно сделать несколько выводов:
- Если вероятность равна единице — значит, она достоверная. Смысл в том, что из общего числа событий нам подходят все — то есть событие точно произойдёт.
- Если вероятность равна нулю — значит, она невозможная. Всё из-за того, что нам не подходит ни одно из имеющихся событий.
- Если вероятность находится в диапазоне от нуля до единицы — она случайная. Это значит, что общее число результатов больше нуля, но не все из них нам подходят.
Теперь вы знаете достаточно, чтобы решать простые задачи по теории вероятностей, чем мы и займёмся в следующем разделе.
Решаем задачи по теории вероятностей
При решении задач используйте главную формулу теории вероятностей, а также формулы сложения и произведения вероятности событий.
Задача 1. В колоде 52 карты. Мы решили вытащить из неё одну — найдите вероятность того, что это будет туз.
- Число всех возможных событий — 52, так как в колоде 52 карты.
- Число благоприятных событий — четыре, так как всего в колоде четыре туза.
Вычислим вероятность того, что из всех карт нам попадётся именно туз:
Теперь посчитаем сумму благоприятных событий:
Ответ: 4/52, или 1/13.
Задача 2. В кармане лежит шесть монет: две рублёвых, две пятирублёвых и две десятирублёвых. Мы по очереди достаём две из них случайным образом. Найдите вероятность того, что они обе будут одного номинала.
Сначала мы достаём первую монету. Это может быть или рубль, или пять, или десять. Получается, вероятность достать монету любого номинала — 1/3.
Теперь достаём вторую монету — она должна быть того же номинала, что и первая. Так как только одна из них удовлетворяет нашим критериям, вероятность этого составляет 1/5. А так как наши события связаны друг с другом, перемножаем вероятности обоих:
Ответ: 1/15.
Задача 3. Вы бросаете игральные кости с шестью сторонами. Найдите вероятность того, что сумма выпавших очков будет равна 7.
Всего существует шесть различных комбинаций, которые дают сумму 7:
Общее число возможных результатов при бросании двух костей равно 6 × 6 = 36. Подставляем наши значения в формулу:
Ответ: 6/36, или 1/6.
Что дальше
В этой статье мы разобрались с базовыми понятиями теории вероятностей. Если хотите лучше разбираться в вопросе, хорошие лекции можно найти здесь и здесь. А на этом бесплатном курсе теория даётся сразу с примерами и упражнениями — полезно, если хотите отточить знания на практике.
Для общего развития можно почитать нашу статью «Математика для джунов» и статью о том, как устроена случайность в играх. А если вы всерьёз нацелены вкатиться в data science и хотите подтянуть математический бэкграунд, для вас есть курс «Основы математики для Data Science».
Читайте также:
- Интегралы: всё, что вы хотели знать, без интриг и сложных терминов
- Заняться фронтенд-разработкой в 12 лет, выиграть IT‑чемпионат в 13: история Али Сулейманова
- Чем различается фронтенд- и бэкенд-разработка
Букву P используют потому, что на английский язык слово «вероятность» переводится как probability.