Nvidia turing что это
Перейти к содержимому

Nvidia turing что это

  • автор:

NVIDIA сравнила производительность графики Turing и Pascal

Компания NVIDIA опубликовала результаты сравнения производительности видеокарт серии GeForce RTX на базе новой архитектуры Turing с предшественниками на базе Pascal.

NVIDIA сравнила производительность графики Turing и Pascal

Видеокарты GeForce RTX справляются с современными AAA-играми в качестве 4K HDR и на скорости 60 кадров в секунду. Такого не могла обеспечить даже флагманская GeForce GTX 1080 Ti. Более того, видеокарты смогли обеспечить скорость 93 к/с в Call of Duty: WWII и 84 к/с в Battlefield 1.

NVIDIA сравнила производительность графики Turing и Pascal

Компания подчеркнула, что видеокарта GeForce RTX 2080 показывает в два раза большую производительность, чем GTX 1080. Такой результат достигается при использовании новой технологии DLSS (Deep Learning Super-Sampling), она применяет глубокое обучение и ИИ к алгоритмам рендеринга для чётких и плавных очертаний объектов в играх.

Без DLSS видеокарта GeForce RTX 2080 обгоняет GTX 1080 примерно в полтора раза. На данный момент DLSS поддерживается в Final Fantasy XV, PUBG, Shadow of the Tomb Raider и некоторых других играх.

22 августа 2018 в 21:29

Технология и архитектура NVIDIA Turing GeForce RTX

Архитектура Turing – это самый главный секрет компании NVIDIA, если они действительно работают над ней 15 лет. Эта архитектура несет в себе, возможно, самую значительную инновацию в области 3D-графики в режиме реального времени с момента появления (почти десять лет назад) программируемых шейдеров. Рейтрейсинг в режиме реального времени для 3D-графики действительно стал заветной целью, ибо он требует практически предельных вычислительных затрат. С новым семейством видеокарт GeForce RTX можно будет сделать вид, что рейтрейсинг уже в руках геймеров. Мы здесь говорим «сделать вид», поскольку в NVIDIA применили ряд хитроумных решений, в результате чего новые видеокарты позволяют получить в режиме реального времени 3D-изображения, очень похожие на те, которые получаются при рендеринге с рейтрейсингом, занимающим многие часы.

Примерно год назад мы впервые услышали кодовое наименование «Turing,» но не придали этому должного значения, потому что чип NVIDIA мог разрабатываться с корыстной целью настричь купонов на волне растущей популярности майнинга – и вот для этого они назвали архитектуру в честь математика, который спас миллионы жизней, расшифровав фашистский код «Enigma» и тем самым ускорив конец Второй мировой войны. Мы и не знали, что в NVIDIA присвоили новой архитектуре имя Алана Тьюринга (Alan Turing) не столько за его достижения в области криптографии, сколько за его всемирную известность как теоретика искусственного интеллекта (ИИ) и основателя теоретической информатики.

rtx

На протяжении пяти с лишним лет NVIDIA вкладывала в ИИ большие средства, разрабатывая первые модели глубокого обучения нейросетей, в которых основной упор был сделан на технологию CUDA и мощные графические процессоры NVIDIA. Первые попытки построения и обучения нейросетей показали, что эта задача требует очень больших временных затрат даже со стороны самых мощных GPU и, следовательно, необходимо применить компоненты, ускоряющие тензорные вычисления. Для этого в NVIDIA разработали первые компоненты с закрепленной функцией тензорных вычислений, которые назвали просто «Tensor Cores» – ядра Tensor. Это крупные специализированные компоненты, осуществляющие операции перемножения трехмерных матриц размером 3x3x3. Ядра Tensor были впервые применены в архитектуре «Volta», которая, как мы тогда думали, могла бы естественным образом прийти на смену архитектуре «Pascal». Однако в NVIDIA решили, что самое время представить свежеиспеченную технологию RTX.

В графической архитектуре Turing представлена третья, заключительная составляющая амбициозного проекта NVIDIA по разработке пользовательского аппаратного обеспечения, реализующего метод рейтрейсинга, – ядра RT. Ядра RT представляют собой специализированные компоненты, которые выполняют ту же функцию, что и ядра CUDA в NVIDIA Optix – предтече RTX. Вы вводите математическое представление луча, который пересекает сцену; при этом вычисляются координаты точки пересечения луча с любой треугольной областью в пределах сцены.

NVIDIA RTX – это универсальная гибкая модель рейтрейсинга для пользовательской графики, работающая в режиме реального времени. Она направлена на минимизацию набора инструментов, используемых в современном графическом 3D-программировании, и оптимизацию кривой обучения специалистов. В результате она должна оказать на реалистичность изображений столь же значительное влияние, как и антиалиазинг, программируемые шейдеры и тесселяция (все эти методы в свое время послужили отправными пунктами для стремительного роста вычислительной мощности графических процессоров). Технология RTX построена на основе ядер Tensor и архитектуры Turing, в которой ядра последнего поколения CUDA работают совместно с новым компонентом – ядром RT.

NVIDIA впервые представила технологию RTX в серии профессиональных видеокарт Quadro RTX, на конференции SIGGRAPH-2018 – не только потому, что это событие предшествует Gamescom, но и потому, что на нем новые технологии демонстрируются в первую очередь разработчикам контента. Серия GeForce RTX – это первое за десять лет семейство игровых видеокарт NVIDIA, у которых в наименовании отсутствует суффикс «GTX», и это просто говорит о том, насколько большое значение придается успеху технологии RTX.

Очень скоро, когда NVIDIA снимет свое эмбарго c обзоров характеристик этих новых видеокарт, мы предложим вашему вниманию обзор результатов производительности видеокарт Turing в ряде игр.

Архитектура Turing и особенности новых видеокарт GeForce RTX

Жизненный срок видеокарт семейства Pascal оказался довольно долгим. Старшие модели продержались на рынке более двух лет и еще будут присутствовать некоторое время в продаже. В течение этого периода мы увидели новые решения на архитектуре Volta, которые остались уделом специализированных ускорителей вычислений. Единственным игровым продуктом семейства Volta стал TITAN V, выпущенный небольшим тиражом при чрезвычайно высокой цене. Но теперь настал момент старта нового поколения, которое должно изменить все. Новые видеокарты на архитектуре Turing не просто привносят очередное повышение производительности, они несут в себе ряд технологических инноваций и являются первыми игровыми решениями, которые поддерживают трассировку лучей в реальном времени. Поэтому даже привычное название GeForce GTX было изменено на GeForce RTX. В данном обзоре мы поговорим об особенностях архитектуры Turing и технических параметрах новых GPU. Практическому знакомству с видеокартами, включая тестирование и сравнение со старыми моделями NVIDIA, будут посвящены следующие обзоры.

Архитектура NVIDIA Turing

Видеокарты GeForce RTX

В семействе Turing можно выделить несколько ключевых изменений. Это абсолютно новая архитектура GPU, появление новых вычислительных блоков — тензорных и RT ядер, ускоренная обработка шейдеров.

Архитектура NVIDIA Turing

На данный момент представлено три видеокарты — GeForce RTX 2080 Ti, GeForce RTX 2080 и GeForce RTX 2070. Все они базируются на разных GPU Turing. Топовая модель получила самый мощный процессор TU102, кристалл которого изображен ниже на слайде.

Архитектура NVIDIA Turing

Вначале приведем блок-схему каждого нового GPU, опишем общие характеристики видеокарт, а потом детально рассмотрим архитектурные изменения. Все процессоры производятся по технологии 12-нм FinFET. Они сохраняют кластерную структуру, когда GPU состоит из нескольких GPC, и, меняя количество таких кластеров, масштабируется производительность каждого конкретного чипа.

Архитектура NVIDIA Turing

TU102 (GeForce RTX 2080 Ti)

Старший графический процессор TU102 состоит из 18,6 миллиардов транзисторов при площади кристалла 754 кв.мм. Если сравнить его с GP102 (GeForce GTX 1080 Ti), то площадь нового чипа и количество транзисторов выросло на 55–60%. У TU102 всего шесть кластеров GPC, каждый содержит по шесть текстурно-процессорных кластеров TPC, объединяющих мультипроцессорные блоки SM. Последние заметно реорганизованы и включают новые блоки, о чем подробнее будет сказано ниже. Каждый SM-блок насчитывает 64 основных вычислительных блока (CUDA-cores). При 72 SM всего получается 4608 потоковых процессоров. Однако GPU GeForce RTX 2080 Ti (как в свое время и у GeForce GTX 1080 Ti) немного урезан. У топовой видеокарты отключены два SM, в итоге общее количество потоковых процессоров равно 4352. Также у данного решения имеется 544 новых тензорных ядра и 68 RT-ядер, 272 текстурных блока и 88 блоков растеризации ROP.

Для сравнения можно напомнить, что GeForce GTX 1080 Ti на базе GP102 оперировал только 3584 ядрами CUDA при 224 текстурных блоках. Так что наращивание потенциала у нового TU102 весьма значительное. Шина памяти осталась 352-битной, но используются новые микросхемы памяти GDDR6 с эффективной частотой обмена данными, эквивалентной значению 14 ГГц. Объем памяти 11 ГБ на уровне старого флагмана, и это вполне достаточно для современных игр в высоких разрешениях.

Судя по блок-схеме у процессора TU102 всего 12 контроллеров памяти разрядностью 32 бита. Поэтому чип может работать с 384-битным интерфейсом. Возможно, мы увидим такую шину вместе с 4608 потоковыми процессорами в новых Titan. Кэш L2 у GeForce RTX 2080 Ti достигает 5632 КБ. Очевидно, что полный объем L2 равен 6 МБ, но он немного порезан вместе с шиной.

Архитектура NVIDIA Turing

TU104 (GeForce RTX 2080)

Следующий в иерархии процессор TU104 имеет конфигурацию из шести кластеров GPC по четыре TPC. В прошлом поколении Pascal сохранялась идентичность внутренней структуры кластеров для решений среднего и топового уровня, лишь в бюджетных GPU уменьшалось количество TPC. Вероятно, такая конфигурация TU104 является оптимальной для сохранения некоего баланса производительности и гибкого управления ресурсами — число кластеров на уровне топового GPU, но они слабее. При этом задействовано 46 SM-блоков из 48, что дает 2944 активных вычислительных ядер CUDA, 368 тензорных ядер, 46 ядер RT и 184 текстурных блока. Объем кэш-памяти L2 равен 4 МБ, что вдвое выше объема L2 у GP102 (GeForce GTX 1080).

Архитектура NVIDIA Turing

TU106 (GeForce RTX 2070)

Неожиданностью стала премьера третьего чипа для GeForce RTX 2070. По аналогии с прошлыми поколениями можно было ожидать простого урезания блоков на процессоре старшей видеокарты. Но основой GeForce RTX 2070 стал GPU TU106 с тремя стандартными кластерами по шесть TPC. Общее количество потоковых процессоров 2034, тензорных блоков 288, блоков RT 36, текстурных блоков 144. При прямом сравнении GeForce RTX 2070 с GeForce RTX 2080 получается разница 28% по вычислительным блокам. Кэш-память L2 осталась на уровне 4 МБ.

TU104 и TU106 обладают 256-битной шиной памяти (8 контроллеров разрядностью 32 бит). При этом видеокарты используют память GDDR6 с эффективной частотой 14 ГГц, что обеспечивает рост пропускной способности памяти относительно прошлого поколения.

Как видим, общая конфигурация вычислительных блоков даже у младшего GPU достаточно мощная, не говоря уже о топовом TU102. А ведь в них еще появились и новые функциональные блоки. Поэтому чипы Turing являются сложными и довольно крупными кристаллами. TU102 состоит из 18,6 млрд. транзисторов, TU104 из 13,6 млрд., а TU106 насчитывает 10,8 млрд. транзисторов. В итоге даже при переходе на 12-нм техпроцесс мы не видим роста рабочих частот. Если говорить, о GeForce RTX 2080 Ti, то тут вообще заявлено базовое значение в 1350 МГц при Boost Clock до 1635 МГц. Для младших GPU рабочие частоты выше, но они примерно на уровне моделей Pascal.

С частотами связан один интересный момент. Впервые NVIDIA вводит разные Boost-частоты при одинаковых базовых значениях. В официальных спецификациям мы видим более высокие значения Boost для моделей Founders Edition производства самой NVIDIA. При этом остальные карты тоже обозначены как Reference, что вводит в заблуждение, поскольку именно референсные версии мы привыкли ассоциировать с Founders Edition. У нас была возможность быстро сравнить видеокарту от NVIDIA с моделью другого производителя, и в реальности разница по частотам минимальная. Так что не стоит бояться разных характеристик. При наличии хорошего охлаждения производительность всех GeForce RTX одной серии будет схожей. Хуже остальных могут оказаться те редкие модели с кулером турбинного типа, которые анонсировали некоторые партнеры.

Видеоадаптер GeForce RTX 2080 Ti GeForce RTX 2080 GeForce RTX 2070
Ядро TU102 TU104 TU106
Количество транзисторов, млн. шт 18600 13600 10800
Техпроцесс, нм 12 12 12
Площадь ядра, кв. мм 754 545 445
Количество потоковых процессоров CUDA 4352 2944 2304
Количество тензорных ядер 544 368 288
Количество ядер RT 68 46 36
Количество текстурных блоков 272 184 144
Количество блоков рендеринга 88 64 64
Частота ядра Base, МГц 1350 1515 1410
Частота ядра Boost, МГц (Reference) 1545 1710 1620
Частота ядра Boost, МГц (Founders Edition) 1635 1800 1710
Шина памяти, бит 352 256 256
Тип памяти GDDR6 GDDR6 GDDR6
Частота памяти, МГц 14000 14000 14000
Объём памяти, ГБ 11 8 8
Поддерживаемая версия DirectX 12 12 12
Интерфейс PCI-E 3.0 PCI-E 3.0 PCI-E 3.0
Мощность, Вт 250/260 215/225 175/185
Официальная стоимость MSRP $999
Founders $1199
MSRP $699
Founders $799
MSRP $499
Founders $599

TDP новых видеокарт остался примерно на старом уровне. Так, для GeForce RTX 2080 Ti Founders Edition заявлено 260 Вт и 250 Вт для партнерских версий. Для GeForce RTX 2080 это 225 и 215 Вт, что выше TDP серии GeForce GTX 1080, но в целом приемлемо для топовых продуктов.

После общего обзора новых GPU поговорим непосредственно об инновациях архитектуры Turing.

Особенности архитектуры Turing

Важные изменения произошли на уровне мультипроцессорных блоков SM, которые имеют стандартную структуру во всех вариантах GPU Turing. Новая архитектура наследует возможности вычислительной архитектуры Volta и игровой архитектуры Pascal. Все вычислительные блоки внутри SM сгруппированы в четыре массива обработки данных со своей управляющей логикой (данные регистров, планировщик). В одном SM насчитывается 64 потоковых процессора. И эти вычислительные блоки теперь умеют одновременно выполнять целочисленные операции (INT32) и операции с плавающей запятой (FP32). Кстати, на схеме SM они обозначены, как разные функциональные блоки. Интересно, что у Pascal было по 128 ядер CUDA в SM, но расчеты формата INT и FP производились в последовательном порядке.

Архитектура NVIDIA Turing

Согласно данным NVIDIA в современных приложениях при выполнении игровых шейдеров целочисленные вычисления занимают до 36%. И выполнение операций двух типов в один поток значительно ускорит общие вычисления. Тут заодно можно сказать о некоем дисбалансе, поскольку полное дублирование INT32 и FP32 не нужно. Но такая структура может быть актуальной для неигровых вычислений и задач.

Архитектура NVIDIA Turing

Обновленная унифицированная структура кэша L1 позволяет конвейеру TPC эффективнее работать с ним. При сохранении общего объема кэша L1 на уровне 96 КБ меньше латентность, а общая пропускная способность может вырасти до двух раз. Также во всех процессорах увеличен объем общего кэша L2. К примеру, в GPU TU102 это 6 МБ вместо 3 МБ у старого GP102.

Архитектура NVIDIA Turing

Появились и абсолютно новые блоки. Это восемь тензорных ядер для математических операций машинного обучения и один блок RT (Ray-tracing) для расчетов трассировки лучей. Но даже без учета новых блоков и новых возможностей рендеринга NVIDIA говорит о среднем росте шейдерной производительности около 50%, что звучит весьма внушительно. В виртуальной реальности VR этот прирост двукратный и даже выше. Это выглядит очень оптимистично, и походу статьи мы раскроем много нюансов, которые дают такой комплексный эффект.

Архитектура NVIDIA Turing

В очередной раз улучшены алгоритмы сжатия данных в буфере кадра, что уменьшает количество обращений к внешней памяти. В сочетании с чипами GDDR6, которые работают при 14 Гбит/с, утверждается о росте эффективной пропускной способности до 50%. Отдельных пользователей насторожило, что GeForce RTX 2080 Ti сохранил объем в 11 ГБ, а GeForce RTX 2080/2070 получили по 8 ГБ памяти, ведь это на уровне существующих моделей Pascal. Однако такого объема сейчас хватает для высоких разрешений, а Turing в теории еще более эффективно работает с памятью.

Чипы Turing получили поддержку новых feature level из Direct 12. Улучшены асинхронные вычисления. Также новая архитектура имеет ряд улучшений для ускоренной обработки шейдеров.

Mesh Shading предлагает новый единый конвейер геометрии, заменяя вершинные, геометрические шейдеры и тесселяцию. Это более гибкий в управлении конвейер с новым типов шейдеров Task Shaders и Mesh Shaders, который позволяет одновременно работать с геометрией группы объектов, уменьшая общее количество draw calls.

Архитектура NVIDIA Turing

Mesh Shading будет эффективен в сценах со множеством объектов и сложной геометрией, позволяя более гибко управлять LOD. На уровне DirectX 12 его можно реализовать через NVAPI. Также поддержку Mesh Shading добавят в OpenGL и Vulkan.

Архитектура NVIDIA Turing

Перспективно выглядит технология Variable Rate Shading (VRS). Этот метод позволяет регулировать качество шейдинга в семплах 4×4 пикселя. Это дает возможности для гибкой оптимизации. Например, на периферии изображение может быть размыто эффектами Motion Blur и высокая точность проработки семплов тут не имеет значения. Это весьма актуально для гоночных игр, где дорога и окружение на периферии кадра часто смазываются.

Архитектура NVIDIA Turing

Три алгоритма используют VRS:

  • Content Adaptive Shading — уменьшает скорость шейдинга для зон со слабо изменяющимся цветом;
  • Motion Adaptive Shading — вариативное качество для движущихся объектов;
  • Foveated Rendering — снижение качества для областей вне зоны фокусировки.

Архитектура NVIDIA Turing

Все это требует внедрения со стороны разработчиков. Однако VRS может реально улучшить производительность. Также это один из факторов, снижающих нагрузку на видеопамять.

Turing поддерживает новую модель Texture Space Shading (TSS). Значения шейдерных данных хранятся в памяти в специальном текстурном пространстве, откуда потом могут повторно вызываться. TSS позволяет использовать такие тексели для временного рендеринга и разных систем координат.

Архитектура NVIDIA Turing

TSS является одним из элементов ускорения обработки VR. Каждый глаз видит похожее изображение. При визуализации кадра правого глаза используются данные из кадра левого глаза, а заново обработаны будут только те текстели, где нет подходящих образцов.

Архитектура NVIDIA Turing

Тензорные ядра Turing являются улучшенными ядрами Volta. Они нужны для выполнения задач с применением искусственного интеллекта. Эти блоки поддерживают расчеты в режимах INT8, INT4 и FP16 при работе с массивами матричных данных для глубокого обучения в реальном времени. Каждое тензорное ядро выполняет до 64 операций с плавающей запятой, используя входные данные формата FP16. То есть один SM с восемью ядрами обрабатывает 512 операций FP16 за такт. Вычисления INT8 проходят на удвоенной скорости 1024 операций, а для INT4 выполняется 2048 операций за такт. И топовый GPU TU102 способен обеспечить пиковую тензорную производительность до 130,5 TFLOPS (Quadro RTX 6000).

Архитектура NVIDIA Turing

Компания NVIDIA давно работает в области искусственного интеллекта. Однако до недавнего времени все технологии на базе обучаемых нейросетей казались уделом каких-то узкоспециализированных областей и больших дата-центров. С появлением Turing ситуация меняется, ведь мы получаем не только аппаратную платформу, но и новые программные возможности. Для интеграции возможностей искусственного интеллекта используется NVIDIA NGX (Neural Graphics Acceleration), позволяя задействовать возможности глубокого обучения для улучшения графики и визуального отображения.

Архитектура NVIDIA Turing

На базе NGX уже реализована технология повышения разрешения изображения AI Super Rez, технология InPainting для восстановления фрагментов фотографий и некоторые другие интересные функции.

Архитектура NVIDIA Turing

Но самым важным является сглаживание Deep Learning Super-Sampling (DLSS). Это развитие Temporal AntiAliasing (TAA) с использованием новых интеллектуальных возможностей Turing. Сейчас TAA является самым распространенным методом сглаживания, который дается с мизерными потерями производительности в несколько процентов. TAA использует данные прошлого кадра для семплов нового. При хорошем результате сглаживания краев этот метод дает определенное смазывание и дрожание картинки, особенно в динамике. DLSS использует специально обученную нейронную сеть для более быстрой и качественной выборки. Новый метод дает четкую картинку при еще меньших затратах производительности.

Архитектура NVIDIA Turing

Архитектура NVIDIA Turing

Сглаживание DLSS выглядит очень перспективно, причем оно легко интегрируется в игры, что упростит его популяризацию. Интересно, что на графиках NVIDIA показан весьма значительный рост fps при активации DLSS. Причина в том, что при DLSS возможны разные методы выборки, и в некоторых режимах речь, по сути, идет о реконструкции финального изображения из меньшего. То есть это действительно может ускорять рендеринг. Также надо понимать, что многие игры сейчас используют технологии адаптивного разрешения со сглаживанием через TAA. Не каждый пользователь в курсе таких тонких настроек. И если ему при автоматической настройке будет выставлен режим DLSS, то он получит заметное улучшение качества картинки при реальном росте быстродействия.

На данный момент известно об интеграции DLSS в движки Unreal Engine и Unity. А список игр, в которые добавят это сглаживание, постоянно растет.

Архитектура NVIDIA Turing

Трассировка лучей

Также технологии нейронных сетей нужны для очистки изображения от шумов при рендеринге с использованием трассировки лучей. И тут мы подбираемся к главной особенности Turing — поддержке трассировки лучей в реальном времени. По сути, мы имеем первое поколение видеокарт, которое поддерживает новый метод рендеринга. Сейчас используется метод растеризации: объекты проецируются на плоскость экрана с последующей обработкой пикселей с учетом расстояния до плоскости проекции и наложения текстур. Поскольку индустрия развивалась много лет, то эффективность современных методов визуализации на актуальных GPU достаточно высокая. Трассировка лучей использует метод построения изображения, приближенный к реальному, имитируя прохождение лучей света в окружающей среде. При трассировке для каждого пикселя строится луч, определяющий его видимость. Далее строятся вторичные лучи от точки пересечения к источнику света для определения освещенности точки.

Архитектура NVIDIA Turing

При трассировке можно корректно просчитывать не только освещенность каждой точки, но и взаимное влияние объектов друг на друга с учетом их материалов. При стандартных методах рендеринга мы видим качественную симуляцию, где правильное затенение или какие-то особенности освещения воссоздаются с использованием определенных упрощений, используются заранее подготовленные отражения, карты теней и разные методы симуляции глобального затенения. Трассировка лучей позволяет сделать все это более достоверным, лучше учитывая особенности окружающей среды и материалов объектов. И чем сложнее сцена, тем более очевидны будут преимущества трассировки.

Архитектура NVIDIA Turing

К примеру, с трассировкой можно создавать корректные отражения с учетом всего окружения. При обычных методах лишние объекты вне зоны кадра просто отсекаются. Также лучше учитываются особенности преломленного и отраженного света, который определяется взаимным влияниеем объектов. Проще воссоздавать полупрозрачные объекты. Сейчас это неплохо симулируется, но не всегда картинка выглядит корректно во всех нюансах.

Трассировка позволяет воссоздавать реалистичные тени, учитывая направленность света и его рассеянность. Мы получим более точные контуры тени и реалистичное размытие по мере удаленности от источника освещения. Кстати, похожий эффект работает с технологией мягких теней NVIDIA HFTS.

Архитектура NVIDIA Turing

Архитектура NVIDIA Turing

Ну и ключевым моментом является воссоздание реалистичного объемного освещения и затенения. Многие преимущества рендеринга с использованием трассировки хорошо показаны в нижнем видеоролике.

Главным препятствием по внедрению трассировки были высокие требования к производительности системы, ведь еще недавно для этого требовались мощные графические фермы. С момента разработки этого алгоритма прошли десятки лет. Сейчас трассировка активно используется в киноиндустрии, а с выходом Turing начинается путь по внедрению данной технологии в игровую индустрию. Все понимают, что это первые шаги в данном направлении. Поэтому о полноценной трассировке пока речь не идет. NVIDIA внедряет гибридный метод рендеринга, который позволяет совмещать растеризацию с трассировкой для некоторых эффектов.

Архитектура NVIDIA Turing

И среди новых игр, где уже заявлена поддержка трассировки, мы видим упоминание лишь некоторых эффектов. Так, в Shadow of the Tomb Raider будут реализованы реалистичные тени, в Battlefield V более качественные отражения, а в Metro Exodus реалистичное глобальное затенение.

Проект Atomic Heart обещает сразу несколько эффектов. Тут будет как реалистичное затенение, так и корректные отражения. Обратите внимание на рекурсию отражений в зеркальной поверхности в конце ролика — выглядит действительно круто.

И это лишь первая волна игр и первое поколение ускорителей GeForce RTX, которые могут обрабатывать трассировку в реальном времени.

Подробнее поговорим о технической реализации гибридного рендеринга. Процессоры Turing могут одновременно сочетать работу конвейера растеризации и трассировки. Растеризация быстрее для определения видимости объекта. Вторичные лучи при трассировке могут уже использоваться для создания качественных отражений, теней и прочих эффектов. Разработчики получат возможность регулировать степень покрытия отраженными лучами нужной поверхности. В целом же количество первичных и вторичных лучей зависит от сложности сцены и многих иных параметров.

Архитектура NVIDIA Turing

Сама трассировка не является некоей эксклюзивной особенностью NVIDIA. Компания Microsoft уже приняла расширение DirectX Raytracing (DXR) для DirectX 12. API определяет команды на выполнение, не ограничивая аппаратное устройство в методах их исполнения. Технология NVIDIA RTX предлагает сочетание программных алгоритмов и аппаратных возможностей для реализации трассировки. Естественно, что NVIDIA RTX работает в среде DirectX 12, но также NVIDIA работает над стандартизацией и внедрением технологии в Vulkan API. По слухам трассировку в среде Vulkan добавят в Final Fantasy XV: Windows Edition.

Одним из методов ускорения трассировки является применение алгоритма Bounding Volume Hierarchy (BVH). Он предполагает разбиение сцены на структуру иерархически связанных блоков, в которые входят разные геометрические примитивы. Каждый луч тестируется, проходя по этому дереву, пока не встретит на своем пути примитив. Создание иерархической структуры BVH избавляет от лишних тестов для луча.

Архитектура NVIDIA Turing

Специальные RT-ядра берут на себя аппаратные расчеты по алгоритму BVH. Без этих блоков процессор вынужден выполнять тысячи лишних операций и расчетов.

Архитектура NVIDIA Turing

Архитектура NVIDIA Turing

Pascal не имеет таких блоков и его производительность в трассировке значительно ниже. Для GeForce GTX 1080 Ti озвучивается цифра в 1,1 гигалучей в секунду (Giga Rays/s). GeForce RTX 2080 Ti с RT-блоками обрабатывает 10 гигалучей в секунду. Разница огромная.

При использовании трассировки лучей на изображении образуется шум, который убирается специальными фильтрами. У Turing используется аппаратное шумоподавление на основе интеллектуальных алгоритмов с использованием глубокого обучения, обеспечивая работой тензорные блоки.

С переходом к гибридному рендерингу получается разная нагрузка на определенные блоки GPU. Нижняя схема показывает примерное распределение нагрузки для вывода одного кадра. При использовании DLSS около 20% времени кадра нужно для тензорных вычислений, а 80% — для обычного рендеринга с использованием ядер CUDA. При этом трассировка требует примерно половину времени от обработки шейдеров FP32, т.е. ядра RT занимают 40% времени кадра. И еще 28% уходит на операции INT32.

Архитектура NVIDIA Turing

Из этого всего NVIDIA выводит новую метрику измерения комбинированной производительности в гибридном рендеринге:

RTX-OPS = TENSOR * 20% + FP32 * 80% + RTOPS * 40% + INT32 * 28% (Tera-OPS)

Для GeForce RTX 2080 Ti это 76–78 Tera-OPS, для GeForce RTX 2080 это 57–60 Tera-OPS, а для старого флагмана GeForce GTX 1080 Ti лишь 11,3 Tera-OPS.

Для наглядности приведем таблицу, в которой сведены вместе данные по скорости выполнения разных вычислений. Это пиковые показатели, с учетом небольшого различия в частотах Boost Clock.

GeForce RTX 2080 Ti GeForce RTX 2080 GeForce RTX 2070 GeForce GTX 1080 Ti
RTX-OPS (Tera-OPS) 76–78 57–60 42–45 11,3
Rays Cast (Giga Rays/s) 10 8 6 1,1
FP32 TFLOPS 13,4–14,2 10–10,6 7,5–7,9 16,3
INT32 TIPS 13,4–14,2 10–10,6 7,5–7,9 н/д
FP16 TFLOPS 26,9–28,5 20,1–21,2 14,9–15,8 н/д
FP16 Tensor TFLOPS совместно с FP16 107,6–113,8 80,5–84,8 59,7–63 н/д
FP16 Tensor TFLOPS совместно с FP32 53,8-56,9 40,3–42,4 29,9–31,5 н/д
INT8 Tensor TOPS 215,2–227,7 161,1–169,6 119,4–126 н/д
INT4 Tensor TOPS 430,3–455,4 322,2–339,1 238,9–252,1 н/д

Виртуальная реальность

Ускорители Turing станут самым быстрым решением для виртуальной реальности VR. Поддерживается технология Multi-View Rendering, которая является развитием Simultaneous Multi-Projection (Pascal). Это метод отрисовки изображения для разных проекций (вплоть до 32) с просчетом геометрии одновременно для нескольких проекций. Новый метод предусматривает возможность большего смещения точек обзора, позволяя работать в VR с большим углом обзора, вплоть до 200 градусов.

Архитектура NVIDIA Turing

Из-за особенностей линз в очках виртуальной реальности на периферии качество изображения ниже, и тут можно снизить качество рендеринга. Для ускорения можно применить Foveated Rendering. Также важную роль в виртуальной среде играет правильное позиционирование звука. Качество объемного звука улучшит технология NVIDIA VRWorks Audio, которая использует метод трассировки для просчета пути звуковой волны. А поскольку теперь есть специальные блоки трассировки, то такие вычисления заметно ускорились.

Архитектура NVIDIA Turing

Среди прочих достоинств новые видеокарты NVIDIA поддерживают VirtualLink USB Type-C для коммутации устройств VR через один интерфейс без лишних проводов.

Блок вывода изображения

Turing получил новый блок вывода изображения с интегрированной поддержкой HDR и более высоких разрешений. Появилась поддержка DisplayPort 1.4a с возможностью передавать картинку 8K при 60 Гц, плюс технология сжатия данных без потерь VESA Display Stream Compression (DSC) 1.2. Turing могут управлять двумя дисплеями 8K при частоте 60 Гц с HDR. Для сохранения оригинальных цветов рекомендуется подключать HDR-мониторы стандарта BT.2100. Всего же у видеокарт три порта DisplayPort. Еще есть один HDMI 2.0b с поддержкой HDCP 2.2.

Архитектура NVIDIA Turing

Упомянутый VirtualLink тоже позволяет подключать 8K-мониторы. Физически он выполнен в виде порта USB Type-C. Изначально интерфейс разработан для простого подключения гарнитур VR.

В процессорах Turing улучшен блок кодирования видео NVENC. Появилась поддержка кодирования H.265 8K при 30 кадрах. Заявлена некая экономия битрейта до 25% для HEVC и до 15% для H.264, что, вероятно, стоит понимать, как повышение качества кодирования относительно прошлого поколения видеокарт. При этом аппаратный кодер работает заметно быстрее программного x264, обеспечивая минимальную нагрузку на CPU при стриминге даже в 4K. Кроме качественного стриминга можно ожидать и новые возможности для обычного захвата видео. При наличии аппаратного 8K-кодировщика функция захвата в 8K должна появиться и в Shadowplay, хотя пока она не заявлена.

Архитектура NVIDIA Turing

Обновлен и декодер видео для воспроизведения видеоконтента: поддерживается декодирование HEVC YUV444 10/12b HDR с частотой 30 кадров в секунду, H.264 8K и VP9 10/12b HDR.

Технология SLI

В поколении Pascal была улучшена пропускная способность в SLI-режиме благодаря использованию двух разъемов MIO с парой соответствующих мостиков. В новых процессорах Turing TU102 и TU104 используется интерфейс NVLink второго поколения для обмена данными между GPU. В TU102 реализовано две линии x8 второго поколения NVLink, а в TU104 одна линия x8. Двунаправленная пропускная способность одной такой линии составляет 50 Гбайт/с. Благодаря новому интерфейсу SLI поддерживаются новые высокие разрешения. Для GeForce GTX 2080 в SLI доступен режим 8K, 4K Surround 144 Гц или 5K при 75 Гц. GeForce GTX 2080 Ti поддерживает даже 8K Surround.

Архитектура NVIDIA Turing

SLI позволяет объединять только две видеокарты. И сам этот режим доступен лишь на GeForce GTX 2080 Ti и GeForce GTX 2080. Стоимость нового мостика SLI на официальном сайте 79 долларов.

Новые возможности GeForce Experience

Появление новых аппаратных возможностей позволило расширить функциональность программного приложения GeForce Experience. В частности, владельцам новых видеокарт будет доступен Ansel RTX.

Архитектура NVIDIA Turing

В новом Ansel можно создавать скриншоты с трассировкой лучей. Причем в режиме паузы качество трассировки будет выше, чем в игре в режиме реального времени.

Архитектура NVIDIA Turing

Технология нейронных сетей позволит делать скриншоты повышенного разрешения с лучшим качеством и проработкой.

Архитектура NVIDIA Turing

Плюс возможность обрабатывать снимки, накладывая разные изображения друг на друга, добавлять стикеры. Будут новые фильтры. Интеграцию Ansel получат многие новые игры, хотя не везде доступны абсолютно все функции. Среди громких релизов осени с Ansel подружатся Battlefield V, Hitman 2, некоторые функции будут в Metro: Exodus.

GPU Boost 4.0 и разгон

В видеоадаптерах NVIDIA давно применяется технология GPU Boost, которая регулирует и повышает частоты ядра. Это ускорение со множеством промежуточных значений, где ключевым является удержать видеокарту в определенных рамках мощности и температур. В очередной раз напомним, что NVIDIA указывает базовое (минимальное) значение частоты и среднее значение Boost Clock. При определенных условиях в игровой нагрузке частоты будут выше заявленного Boost. При хорошем охлаждении так зачастую и происходит. И это отличается от системы обозначений частот у видеокарт AMD, где вплоть до семейства Vega указывалось максимальное значение частоты ядра.

Алгоритм работы GPU Boost постоянно совершенствуется. В прошлом поколении был реализован GPU Boost 3.0, где впервые ппользователь получил возможность настроить кривую частот через через программные настройки специальных утилит. В новом GPU Boost 4.0 пользователю доступно еще больше возможностей для тонкой настройки, где можно контролировать вторую точку целевой температуры и определять время работы при достижении температурных лимитов.

Архитектура NVIDIA Turing

Новые функции настройки Boost с гибким подбором параметров температурной кривой доступны в утилите EVGA Precision X1.

Архитектура NVIDIA Turing

Также в Turing появилась функция автоматического подбора частот для разгона. NVIDIA Scanner запускает специальный тест для проверки на стабильность при постепенном повышении частот. Такое сканирование и тест занимают 20 минут, но довольно точно определяют потолок максимальных частот, избавляя пользователя от лишних тестов. Очень удобно, особенно, для тех, кто слабо разбирается в этой теме. Поддержка NVIDIA Scanner есть в новой версии MSI Afterburner и EVGA Precision X1.

Архитектура NVIDIA Turing

Если производитель дает некие возможности для ускорения видеокарт, то он уверен в качественной реализации питания и дополнительном потенциале охлаждения для таких манипуляций.

Архитектура NVIDIA Turing

Не случайно установлены столь высокие цены на версии Founders Edition. Если в прошлом поколении это казалось переплатой исключительно за раннюю доступность на рынке и эксклюзивность, то теперь чувствуется серьезный основательный подход. Видеоадаптеры Turing получили новое охлаждение с большим радиатором, испарительной камерой и двумя вентиляторами. Даже по весу чувствуется, что это качественный продукт с мощным охлаждением.

Архитектура NVIDIA Turing

Впервые референсные карты от NVIDIA не требуют компромиссов, а сразу обеспечивают отличные температурно-шумовые характеристики. Плюс изначально прошиты более высокие частоты Boost, и есть все возможности для реализации разгона без замены охлаждения.

Подробнее о конкретных экземплярах GeForce RTX мы поговорим в будущих обзорах.

Выводы

NVIDIA Turing — передовая графическая архитектура, которая расширяет возможности привычного рендеринга, добавляя трассировку лучей в реальном времени и возможность использовать нейронные сети для вспомогательных функций. Новые аппаратные возможности обеспечивают поддержку совершенно новых технологий и графических эффектов. Появление Turing стало знаковым событием, которое обозначает старт новой эры и постепенную интеграцию трассировки в игровую индустрию. Уже есть первые проекты, где будет поддержка эффектов на базе трассировки NVIDIA RTX. Еще больше игр получат поддержку нового сглаживания NVIDIA DLSS. Также в Turing есть много улучшений для ускорения традиционного рендеринга. Даже без учета трассировки вы изначально получаете самые быстрые игровые видеокарты с потенциалом для наращивания производительности после внедрения новых технологий.

Наряду со своей технологичностью новое поколение радует качественным подходом к проектированию конечных устройств. Референсные ускорители GeForce RTX перешли на новое охлаждение, есть функции для более простого разгона. Все сделано для того, чтобы удовлетворить запросы самого требовательного пользователя и оправдать высокую стоимость видеокарт.

О производительности GeForce RTX 2080 и GeForce RTX 2080 Ti в существующих играх мы поговорим в следующих обзорах, которые выйдут в ближайшие дни. Оставайтесь с нами и следите за новостями!

NVIDIA. Раскрывая тайны архитектуры GPU Turing следующего поколения: удвоенный Ray Tracing, GDDR6 и многое другое

На презентации NVIDIA SIGGRAPH 2018 генеральный директор компании Дженсен Хуан официально представил долгожданную (и вызвавшую многочисленные слухи и домыслы) архитектуру Turing GPU. Следующее поколение графических процессоров NVIDIA, Turing, будет включать в себя ряд новых функций, и увидит мир уже в этом году. Хотя в центре внимания сегодняшних анонсов оказалась профессиональная визуализация (ProViz), мы ожидаем, что новая архитектура будет использоваться и в других предстоящих продуктах NVIDIA. Сегодняшний обзор это не просто перечисление всех особенностей Тьюринг.

Гибридный рендеринг и нейронные сети: RT & Tensor Cores

Так что же такого особенного и нового в архитектуре Тьюринг? Функция marquee, по крайней мере для комьюнити ProViz от NVIDIA, предназначена для гибридного рендеринга, который сочетает в себе трассировку лучей с традиционной растеризацией.

Главное изменение: NVIDIA включила в Turing еще больше оборудования для трассировки лучей, чтобы предложить наиболее быстрое хардварное ускорение трассировки лучей. Новым для архитектуры Тьюринга является специализированный вычислительный блок RT Core, как его называет NVIDIA, в настоящее время о нем недостаточно много информации, известно лишь что его функция — поддержка трассировки лучей. Эти процессорные блоки ускоряют как проверку пересечения лучей и треугольников, так и манипуляции с BVH (иерархии ограничивающих объемов).

NVIDIA заявляет, что самые быстрые компоненты Тьюринг могут обсчитывать 10 миллиардов (Гига) лучей в секунду, что по сравнению с неускоренным Pascal является 25-кратным улучшением характеристик трассировки лучей.

Архитектура Тьюринг включает тензорные ядра Volta, которые были усилены. Тензорные ядра являются важным аспектом нескольких инициатив NVIDIA. Наряду с ускорением трассировки лучей, важным инструментом в «магической сумке с фокусами» NVIDIA является уменьшение количества лучей, требуемых в сцене с помощью шумоподавления AI, чтобы очистить изображение, здесь тензорные ядра справляются лучше всех. Конечно, это не единственная область, где они хороши – все нейронные сети и AI империи NVIDIA построены на них.

Turing характерна поддержка более широкого диапазона точности, а значит, возможность значительного ускорения в рабочих нагрузках, которые не имеют высоких требований к точности. Помимо precision mode Volta FP16, тензорные ядра Turing поддерживают INT8 и даже INT4. Это в 2 и 4 раза быстрее, чем FP16, соответственно. Хотя на презентации NVIDIA не пожелала углубляться в детали, я бы предположил, что они реализовали что-то похожее на упаковку данных, которую используют для низкоточных операций на ядрах CUDA. Несмотря на сниженную точность нейронной сети (уменьшена отдача — по INT4 мы получаем всего 16 (!) значений) — есть определенные модели, которым действительно достаточен этот низкий уровень точности. Как результат, режимы сниженной точности покажут хорошую пропускную способность, особенно в задачах вывода, что несомненно порадует некоторых пользователей.

Возвращаясь к гибридному рендерингу в целом, интересно, что несмотря на эти большие индивидуальные ускорения, общие обещания NVIDIA по приросту производительности выглядят несколько скромнее. Хотя компания и обещает повысить производительность в 6 раз по сравнению с Pascal, не пора ли поинтересоваться, какие именно части ускорены, и в сравнении с какими. Время покажет.

Между тем, чтобы лучше использовать тензорные ядра вне задач трассировки лучей и узконаправленных задач глубокого обучения, NVIDIA будет развертывать SDK, NVIDIA NGX, что позволит интегрировать нейронные сети в обработку изображений. NVIDIA предполагает использование нейронных сетей и тензорных ядер для дополнительной обработки изображений и видео, включая такие методы, как предстоящее Deep-Anti-Aliasing (DLAA).

Turing SM: выделенные ядра INT, единый кэш, Variable Rate Shading

Наряду с RT и тензорными ядрами, архитектура Turing Streaming Multiprocessor (SM) и сама преподносит новые трюки. В частности, унаследовано одно из последних изменений Volta, в результате которого ядра Integer выделяются в свои собственные блоки, а не являются частью ядер CUDA с плавающей точкой. Преимущество — ускоренная генерация адресов и производительность Fused Multiply Add (FMA).

Что касается ALU (я все еще жду подтверждения для Turing) — поддержка более быстрых операций с низкой точностью (например, быстрый FP16). В Volta это реализовано как операции FP16 на удвоенной частоте относительно FP32, и INT8 операции на скорости 4x. Тензорные ядра уже поддерживают эту концепцию, поэтому было бы логично перенести ее на ядра CUDA.
Быстрая FP16, технология Rapid Packed Math и другие способы упаковки нескольких небольших операций в одну крупную операцию — все это ключевые компоненты улучшения производительности графического процессора в то время, когда закон Мура замедляется.

Используя большие (точные) типы данных только по мере необходимости, их можно упаковать вместе, чтобы выполнить больше работы за тот же период времени. Это, в первую очередь, важно для вывода нейронных сетей, а также для разработки игр. Дело в том, что не все шейдерные программы нуждаются в точности FP32, а сокращение точности может повысить производительность и сократить полезную пропускную способность памяти и использование файла реестра.

Turing SM включает в себя нечто, что NVIDIA называет «unified cache architecture». Поскольку я все еще ожидаю официальных SM-диаграмм от NVIDIA, неясно, является ли это той же унификацией, которую мы видели у Volta — где кеш L1 был объединен с общей памятью — или NVIDIA сделала еще один шаг вперед. Во всяком случае, NVIDIA заявляет, что теперь предложена вдвое большая пропускная способность относительно «предыдущего поколения», но при этом неясно, имеется ввиду «Паскаль» или «Вольта» (последнее более вероятно).

Наконец, глубоко спрятанное в пресс-релизе Turing, обнаружено упоминание поддержки variable rate shading. Это относительно молодая и развивающаяся технология графического рендеринга, о которой мало информации (особенно о том, как именно она реализована у NVIDIA). Но на очень высоком уровне абстракции это звучит как «технология нового поколения NVIDIA, позволяющая применять затенение с различным разрешением, что дает возможность разработчикам отображать различные области экрана при различных эффективных разрешениях для концентрации качества (и времени рендеринга) в областях, где это наиболее необходимо».

«Накормить зверя»: поддержка GDDR6

Поскольку память, используемая графическими процессорами, разрабатывается сторонними компаниями, здесь нет секретов. JEDEC и его крупные 3 участника Samsung, SK Hynix и Micron развивают память GDDR6 в качестве преемника GDDR5 и GDDR5X. NVIDIA подтвердила тот факт, что Turing будет ее поддерживать. В зависимости от производителя, GDDR6 первого поколения рекламируется как обладатель пропускной способности памяти до 16 Гбит/с на шину, что вдвое больше, чем у карт последнего поколения NVIDIA GDDR5, и на 40% быстрее, чем у последних карт GDDR5X от NVIDIA.

По сравнению с GDDR5X, GDDR6 не выглядит каким-то крупным прорывом, так как многие нововведения GDDR6 уже были применены в GDDR5X. Принципиальные изменения здесь включают более низкие рабочие напряжения (1.35v), а внутренне память теперь разделена: два канала памяти на микросхему. Для стандартного 32-битного чипа — два 16-битных канала памяти, в общей сложности имеем 16 таких каналов на 256-битной карте. Хотя это, в свою очередь, говорит, что существует очень большое количество каналов, графические процессоры получат от нововведения максимальную выгоду, ведь исторически они являются максимально «параллельными» устройствами.

NVIDIA со своей стороны подтвердила, что первые карты Turing Quadro будут использовать GDDR6 со скоростью 14 Гбит/с. При этом NVIDIA также подтвердила использование памяти Samsung, особенно для своих передовых 16-гигабайтных устройств. Это важно, так как означает, что типичный 256-битный графический процессор NVIDIA может быть оснащен 8 стандартными модулями и получить 16 ГБ общей емкости памяти, или даже 32 ГБ, если они используют clamshell mode (позволяет адресовать 32 Гбайт памяти на стандартной 256-битной шине).

Всякие подробности: NVLink, VirtualLink и 8K HEVC

Уже заканчивая обзор архитектуры Turing, NVIDIA мимоходом подтвердила поддержку некоторых новых функций внешнего ввода-вывода. Поддержка NVLink будет присутствовать, как минимум, в нескольких продуктах Turing. Напомним, что NVIDIA использует ее во всех трех новых картах Quadro. NVIDIA предлагает двухстороннюю конфигурацию графического процессора.

Важный момент (прежде чем часть нашей аудитории, ориентированной на игры, углубится в чтение): наличие NVLink в оборудовании Turing еще не означает, что оно будет использоваться в потребительских видеокартах. Возможно все ограничится только картами Quadro и Tesla.

С добавлением поддержки VirtualLink у игроков и пользователей ProViz будет что ожидать от VR. Альтернативный режим USB Type-C был анонсирован в прошлом месяце и поддерживает 15 Вт + мощности, передачу 10 Гбит/с данных благодаря USB 3.1 Gen 2, 4 полосы DisplayPort HBR3 на одном кабеле. Другими словами, это соединение DisplayPort 1.4 с дополнительными данными и мощностью. Это позволяет видеокарте напрямую управлять головной гарнитурой VR. Стандарт поддерживается NVIDIA, AMD, Oculus, Valve и Microsoft, поэтому продукты Turing станут первыми из ряда продуктов, которые будут поддерживать новый стандарт.

Хотя NVIDIA только едва коснулась темы, мы знаем, что блок видеокодера NVENC был обновлен в Turing. Последняя итерация NVENC добавляет специальную поддержку кодирования HEKC 8K. Тем временем NVIDIA смогла улучшить качество своего кодировщика, позволяя достичь такого же качества, как и раньше, с меньшим на 25% битрейтом видео.

Показатели производительности

Наряду с объявленными спецификациями оборудования, NVIDIA показывает несколько цифр производительности оборудования Turing. Следует отметить, что здесь мы знаем очень и очень мало. Компоненты, по-видимому, основаны на полностью и частично включенных Turing SKU с 4608 ядрами CUDA и 576 тензорными ядрами. Частоты не раскрываются, однако, поскольку эти цифры профилированы для аппаратного обеспечения Quadro, мы, вероятно, увидим более низкие тактовые частоты, чем на любом потребительском оборудовании.

Наряду с вышеупомянутым показателем 10GigaRays/sec для ядер RT, производительность тензорных ядер NVIDIA составляет 500 триллионов тензорных операций в секунду (500T TOPs). Для справки, NVIDIA часто упоминает GPU GV100 как способную выдать максимум 120T TOP, но это не одно и то же. В частности, в то время как GV100 упоминается при обработке операций FP16, производительность Turing цитируется с чрезвычайно низкой точностью INT4, которая как раз составляет четверть размера FP16 и, следовательно, увеличивает пропускную способность в четыре раза. Если мы будем нормализовать точность, то тензорные ядра Тьюринга, по-видимому, не имеют лучшей пропускной способности на ядро, а скорее предлагают больше вариантов точности, чем Volta. Во всяком случае, 576 тензорных ядер в этом чипе ставят его почти вровень с GV100, который имеет 640 таких ядер.

Что касается ядер CUDA, NVIDIA заявляет, что графический процессор Turing может предложить 16 TFLOPS производительности. Это немного опережает 15 TFLOPS производительности с единой точностью Tesla V100, или еще больше опережает 13,8 TFLOPS от Titan V. Если вы ищете более понятную потребителю информацию, это примерно на 32% больше чем у Titan Xp. Набросав несколько приблизительных расчетов на бумаге, можно предположить тактовую частоту GPU примерно в 1730 МГц, с учетом, что на уровне SM не было никаких дополнительных изменений, которые бы поменять традиционные формулы производительности ALU.

Между тем NVIDIA заявила, что карты Quadro будут поставляться с памятью GDDR6, работающей со скоростью 14 Гбит / с. И глядя на две лучших Quadro SKU, предлагающие 48 ГБ и 24 ГБ GDDR6 соответственно, мы почти видим 384-битную шину памяти у этого графического процессора Turing. Переходя к цифрам, это составляет до 672 ГБ/с пропускной способности памяти для двух топовых карт Quadro.

В противном случае, с изменением архитектуры сложно сделать много полезных сравнений производительности, особенно сравнивая с Pascal. Из того, что мы видели у Volta, общая эффективность NVIDIA повысилась, особенно в хорошо продуманных вычислительных нагрузках. Таким образом, примерно 33% улучшение производительности на бумаге, в сравнении с Quadro P6000, вполне может оказаться чем-то намного большим.

Я упомяну размер кристалла нового графического процессора. Расположившись на 754 мм2, он не просто большой, он огромный. По сравнению с другими графическими процессорами уступает по величине только NVIDIA GV100, который в настоящее время остается флагманом NVIDIA. Но учитывая 18,6 млрд транзисторов, легко понять, почему результирующий чип должен быть таким большим. Видимо у NVIDIA есть большие планы на этот GPU, что в итоге сможет оправдать наличие двух огромных графических процессоров в своем стеке продуктов.

NVIDIA, со своей стороны, не указала конкретный номер модели этого GPU – является ли он традиционным графическим процессор класса 102 или даже 100-го класса. Интересно, увидим ли мы модификацию этого типа GPU для потребительского продукта в той или иной форме; он настолько велик, что NVIDIA может пожелать сохранить его для своих более прибыльных графических процессоров Quadro и Tesla.

Выйдет в четвертом квартале 2018 года, если не раньше

Напоследок скажу, что наряду с анонсом архитектуры Turing, NVIDIA объявила, что первые 4 карты Quadro на базе графических процессоров Turing — Quadro RTX 8000, RTX 6000 и RTX 5000 начнут поставляться в четвертом квартале этого года. Поскольку сама природа этого анонса несколько инвертирована — обычно NVIDIA сначала объявляет потребительские компоненты — я бы не стал применять ту же временную шкалу к потребительским картам, которые не имеют столь жестких требований к валидации. Мы увидим оборудование Turing в четвертом квартале этого года, если не раньше. Желающие купить Quadro могут начинать экономить деньги уже сейчас: лучшая из новых карт Quadro RTX 8000 обойдется вам примерно в 10 000 долларов.

Наконец, что касается потребителей с Tesla от NVIDIA, запуск Turing оставляет Volta в подвешенном состоянии. NVIDIA не рассказала нам, будет ли Turing в конечном итоге расширяться в high-end пространство Tesla — заменив GV100 — или их лучший процессор Volta останется хозяином своего домена на века. Однако, поскольку другие карты Tesla были до сих пор основаны на Pascal, они первые кандидаты на вытеснение Тьюрингом в 2019 году.

Спасибо, что остаетесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до декабря бесплатно при оплате на срок от полугода, заказать можно тут.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *