Какие способы задания вероятностей вы знаете
Перейти к содержимому

Какие способы задания вероятностей вы знаете

  • автор:

ТЕСТЫ ТВиМС с ответами

Только сегодня: скидка до 20% в подарок на первый заказ.
Какую работу нужно написать?

Другую работу

Помощник Анна

ТЕСТЫпо курсу «Теория вероятностей и математическая статистика»

  1. Вероятность события это:
  • отношение где число исходов испытаний, благоприятствующих появлению события , -общее число исходов испытаний;
  • числовая функция, определенная на поле событий и удовлетворяющая трем условиям:
  1. ; 2. ; 3.
  • числовая мера появления события в испытаниях;
  • отношение где число появлений событий А в испытаниях;
  • число элементарных событий в некотором подмножестве .

2. Какие способы задания вероятностей вы знаете:

  • классический, динамический, точечный, геометрический;
  • статистический, геометрический, биноминальный, классический;
  • геометрический, классический, дискретный, статистический;
  • классический, геометрический, точечный, статистический;
  • классический, геометрический, статистический, комбинаторный.

3. Когда применяется классический способ задания вероятности:

  • пространство элементарных событий бесконечно, все события равновозможные и независимые;
  • пространство элементарных событий замкнуто, все события независимы;
  • пространство элементарных событий конечно, все события равновозможные;
  • пространство элементарных событий конечно, все элементарные события независимы.

4. Когда применяется геометрический способ задания вероятности:

  • пространство элементарных событий бесконечно, все события равновозможные и независимые;
  • пространство элементарных событий замкнуто, все события независимы;
  • пространство элементарных событий конечно, все события равновозможные;
  • пространство элементарных событий конечно, все элементарные события независимы.

5. Назовите основные аксиомы вероятностей:

  • ; ;;
  • ; ;;
  • ;;
  • ;; .

6. Суммой двух событий и называют:

  • событие , состоящее из элементарных событий, принадлежащих или событию или ;
  • событие , состоящее из элементарных событий, принадлежащих или событию или ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;

7. Произведением двух событий и называют:

  • событие , состоящее из элементарных событий, принадлежащих или событию или ;
  • событие , состоящее из элементарных событий, принадлежащих или событию или ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;
  • событие , состоящее из элементарных событий, принадлежащих и событию и ;
  1. Вероятность суммы двух совместных событий равна:
  1. Вероятность произведения двух совместных событий рана:
  1. Формула полной вероятности:
  1. Законы распределения случайной дискретной величины представляются в виде:
  • функции распределения и совокупностью значений ;
  • функции распределения и функции плотности распределения ;
  • функции распределения и совокупностью значений ;
  • функции распределения и рядом распределения ;
  • функции распределения и ;
  • функции распределения и .
  1. Законы распределения непрерывной случайной величины представляются в виде:
  • функции распределения и совокупностью значений ;
  • функции распределения и функции плотности распределения ;
  • функции распределения и совокупностью значений ;
  • функции распределения и рядом распределения ;
  • функции распределения и ;
  • функции распределения и .
  1. Функция распределения случайной величины это:
  • Вероятность того, что
  • Вероятность того, что
  • Вероятность того, что
  • Вероятность того, что
  • Вероятность того, что.
  1. Функция плотности распределения случайной величины это:
  • средняя плотность распределения вероятности на интервале , равная ;
  • предельная средняя плотность вероятности на интервале , равная;
  • предельная средняя плотность вероятности на интервале , равная;
  • предельная средняя плотность вероятности на интервале , равная;
  • средняя плотность распределения вероятности на интервале , равная ;
  1. Основные числовые характеристики дискретных случайных величин это:
  • Среднее арифметическое, дисперсия, квантиль, моменты -того порядка, мода и медиана;
  • Дисперсия, центральные и начальные моменты -того порядка, среднее геометрическое, мода и медиана;
  • Математическое ожидание, мода, медиана, дисперсия, среднее квадратичное отклонение, центральные и начальные моменты -того порядка.
  • Математическое ожидание, среднее арифметическое, дисперсия, среднее квадратичное отклонение, мода, медиана, центральные и начальные моменты -того порядка.
  • Математическое ожидание, мода, медиана, дисперсия, среднее квадратичное отклонение, центральные и начальные моменты -того порядка, эксцесс, асимметрия.
  1. Функция распределения и функция плотности распределения имеют следующие свойства:
  1. Дисперсия случайно величины равна:
  1. Математическое ожидание непрерывной случайной величины равно:
  • .
  1. Нормальный закон распределения имеет следующую функцию плотности распределения :
  1. Для нормального закона распределения вероятность попадания случайной величины в интервал равен:
  1. Сущность предельных теорем и закона больших чисел заключается:
  • В определении числовых характеристик случайных величин при большом числе наблюдаемых данных;
  • В поведении числовых характеристик и законов распределения наблюдаемых значений случайных величин;
  • В определении области применения нормального закона распределения случайных величин при сложении большого количества случайных величин;
  • В поведении числовых характеристик и законов распределения случайных величин при увеличении числа наблюдений и опытов.
  • В определении суммарных значений основных характеристик законов распределения.
  1. Коэффициент корреляции случайных величин характеризует:
  • Степень независимости между случайными величинами;
  • Степень нелинейной зависимости между случайными величинами;
  • Степень линейной зависимости между случайными величинами;
  • Степень регрессии между случайными величинами;
  • Степень разброса двух величин относительно математического ожидания.
  • Степень отклонения двух величин от их математических ожиданий.
  1. Марковским случайным процессом называют такие процессы, у которых:
  • Плотность совместного распределения произвольных сечений полностью определяет поведение процесса;
  • Плотность совместного распределения произвольных сечений полностью определяет поведение процесса;
  • Плотность совместного распределения произвольных сечений полностью определяет поведение процесса;
  • Плотность совместного распределения произвольных сечений полностью определяет поведение процесса;
  • Плотность совместного распределения произвольных сечений полностью определяет поведение процесса;
  1. Марковскими цепями называю случайных процесс, у которого:
  • Сама функция подчиняется нормальному закону распределения;
  • Сама функция подчиняется показательному закону распределения;
  • Сама функция имеет дискретный характер;
  • Сама функция имеет непрерывный характер;
  • Сама функция подчиняется биноминальному закону распределения;
  1. К оценкам генеральной совокупности предъявляются следующие требования:
  • Оценка должна быть стационарной, эргодичной и эффективной;
  • Оценка должна быть состоятельной, эргодичной и эффективной;
  • Оценка должна быть состоятельной, стационарной и эргодичной ;
  • Оценка должна быть состоятельной, эффективной и несмещенной;
  • Оценка должна быть несмещенной, стационарной и эффективной;
  1. Статистической гипотезой называют:
  • Предположение относительно параметров и вида закона распределения генеральной совокупности;
  • Предположение относительно объема генеральной совокупности;
  • Предположение относительно параметров и вида закона распределения выборки;
  • Предположение относительно объема выборочной совокупности;
  • Предположение относительно статистического критерия ;
  1. При проверки статистической гипотезы ошибка первого рода это:
  • Принятие в действительности неверной гипотезы;
  • Отвержение в действительности правильной гипотезы;
  • Принятие в действительности правильной гипотезы;
  • Отвержение в действительности неправильной гипотезы;
  1. В критерии Колмогорова за меру качества согласия эмпирического и теоретического распределения принимается:
  • Относительное расхождение между теоретической и эмпирической частотами попадания случайной величины в интервал;
  • Максимальное расхождение по модулю между теоретической и эмпирической частотами попадания случайной величины в интервал;
  • Среднее квадратичное отклонение между теоретической и эмпирической частотами попадания случайной величины в интервал;
  • Максимальное расхождение модуля разности между эмпирической и теоретической функциями распределения;
  • Максимальное расхождение модуля разности между эмпирической и теоретической функциями плотности распределения;
  1. Дисперсионный анализ позволяет:
  • Установить степень влияния фактора на изменчивость признака;
  • Установить количество факторов влияния на изменчивость признака;
  • Установить степень влияния факторов на дисперсию;
  • Установить степень влияния фактора на среднее значение;
  • Установить степень влияния фактора на числовые характеристики случайной величины;
  1. Задачами регрессионного анализа являются:
  • Выявление связи между случайными величинами и оценка их тесноты;
  • Выявление связи между случайными величинами и их числовыми характеристиками;
  • Выявление уравнения связи между случайными величинами;
  • Выявление уравнения связи между случайной зависимой переменной и неслучайными независимыми переменными и оценка неизвестных значений зависимой переменной;
  • Выявление уравнения связи между неслучайной зависимой переменной и случайными независимыми переменными и оценка неизвестных значений независимой переменной;
  • Выявление уравнения связи между неслучайной независимой переменной и случайными независимыми переменными и оценка неизвестных значений зависимой переменной;

Задачи

  1. В урне 6 белых и 4 черных шара. Из нее вынимают подряд 3 шара. Найти вероятность того, что оба шара черные?
  2. Продавец мороженного в солнечный день может заработать 10 $., а в дождливый – 3. Чему равна ожидаемая выручка, если вероятность того, что день окажется дождливым, равна 0,4?
  3. В банк подано 5 заявок фирм на получение кредита. Вероятность получить кредит для каждой фирмы равна 0,5. Найти вероятность того, что из пяти фирм кредит получит ровно 3 фирмы?
  4. Случайная величина задана функцией распределения:

Найти плотность распределения случайной величины и вычислить вероятность того, что .

  1. Коробки с шоколадом упаковываются автоматики чески: средний вес коробки равен 1,06 кГ, а его среднее квадратичное отклонение равно 0,25 кГ. Найти практически возможный максимальный вес одной коробки, если масса коробок поднимается нормальному закону распределения.
  1. В урне 2 белых и 7 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара черные?
  2. Продавец мороженного в солнечный день может заработать 5 $., а в дождливый – 2. Чему равна ожидаемая выручка, если вероятность того, что день окажется дождливым, равна 0,5?
  3. В банк подано 3 заявок фирм на получение кредита. Вероятность получить кредит для каждой фирмы равна 0,6. Найти вероятность того, что из пяти фирм кредит получит ровно 2 фирмы?
  4. Случайная величина задана функцией распределения:

Найти плотность распределения случайной величины и вычислить вероятность того, что .

  1. Коробки с шоколадом упаковываются автоматики чески: средний вес коробки равен 1,0 кГ, а его среднее квадратичное отклонение равно 0,2 кГ. Найти практически возможный максимальный вес одной коробки, если масса коробок поднимается нормальному закону распределения.
  1. В урне 4 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара черные?
  2. Продавец мороженного в солнечный день может заработать 12 $., а в дождливый – 6. Чему равна ожидаемая выручка, если вероятность того, что день окажется дождливым, равна 0,8?
  3. В банк подано 7 заявок фирм на получение кредита. Вероятность получить кредит для каждой фирмы равна 0,8. Найти вероятность того, что из пяти фирм кредит получит ровно 4 фирмы?
  4. Случайная величина задана функцией распределения:

Найти плотность распределения случайной величины и вычислить вероятность того, что .

  1. Коробки с шоколадом упаковываются автоматики чески: средний вес коробки равен 0,5 кГ, а его среднее квадратичное отклонение равно 0,1 кГ. Найти практически возможный максимальный вес одной коробки, если масса коробок поднимается нормальному закону распределения.
  1. Из группы деталей делается случайная выборка ( с возвратом) 20 штук. Найти доверительный интервал для генерального среднего с вероятностью 0,95, если результаты выборки представлены в таблице:
    Вес деталей, кГ 500 510 520 530
    Количество (частота) 3 6 10 1
  2. Предполагается произвести выборочное обследование 2000 ламп с целью установления продолжительности их горения. Каким должен быть объем повторной выборки, чтобы можно было гарантировать с вероятностью 0,9, что генеральное среднее отличается от выборочного по абсолютной величине меньше, чем на 20 часов, если генеральная дисперсия меньше 10000 часов.
  1. Распределение признака Х в выборке дается следующим вариационным рядом:
3,0-3,6 3,6-4,2 4,2-4,8 4,8-5,4 5,4-6,0 6,0-6,6 6,6-7,2
2 8 35 43 22 15 5

23.11.2019 914.43 Кб 14 Тесты по Эконом теории.doc

20.02.2016 84.99 Кб 462 тесты с ответами Основы Права 09-10.doc

20.08.2019 67.8 Кб 2 Тесты с ответами по Финансам.docx

20.02.2016 555.52 Кб 143 Тесты Социально-экономическая статистика Жанна.doc

21.04.2019 456.19 Кб 3 Тесты Социально-экономическая статистика.doc

20.02.2016 300.03 Кб 545 ТЕСТЫ ТВиМС с ответами.doc

20.02.2016 134.66 Кб 41 ТЕСТЫ ФИЛОСОФИЯ.doc

20.02.2016 135.68 Кб 19 ТЕСТЫ ФИЛОСОФИЯ.doc

20.02.2016 798.72 Кб 52 тесты эмм новые.doc

20.02.2016 85.5 Кб 80 ТЕСТЫ. Политология.doc

20.02.2016 81.41 Кб 67 ТЕСТЫ. Политология1111111111111111.doc

Ограничение

Для продолжения скачивания необходимо пройти капчу:

Учебник по теории вероятностей

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями. Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Полезные материалы

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров. )
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей. )
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов. )

Обучающие статьи с примерами

  • Как найти вероятность в задачах про подбрасывания монеты?
  • Как найти вероятность в задачах про игральные кости?

Примеры решений на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m=n=10. Следовательно, Р(А)=1. Событие А достоверное.

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m=0, n=15. Следовательно, искомая вероятность р=0. Событие, заключающееся в вынимании синего шара, невозможное.

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А, m=9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Теории вероятностей: готовимся к собеседованию и разрешаем «парадоксы»

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов и набора неотрицательных чисел , таких что их сумма равна . Довольно часто все исходы считаются равновероятными, т.е. . В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество . Вероятность события , обозначается , — это сумма всех таких , что . В частности, вероятность пустого события равна нулю, а события равна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е. .

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка чеканная «правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов, . Так как мы договорились, что монетка «правильная», то разумно считать, что . Теперь давайте перечислим все возможные события и их вероятности.

  1. Не выпадет ни орёл, ни решка. Это соответствует событию , .
  2. Выпадет орёл, , .
  3. Выпадет решка, , .
  4. Выпадет орёл или решка, , .
Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов, , все их вероятности равны . Количество различных событий в этом эксперименте равно (это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

  1. Выпадет 1, , .
  2. Выпадет число большее трёх, , .
  3. Выпадет число кратное трём, , .
Пример: два подбрасывания монетки

В тех же предположениях о «симметричености» монеты мы определим множество элементарных исходов как множество упорядоченных пар

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е. .
Примеры событий.

  1. В первом броске выпадет решка, , .
  2. Выпадет хотя бы одна решка, , .
  3. Монетка дважды выпадет одной стороной, , .
Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов . Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с исходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е. . Но мы можем для удобства рассмотреть более простое множество элементарных исходов с 31 исходом, но с разными вероятностями: , , .

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию
.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством и вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

  1. Бросаем два игральных кубика: красный и синий. Определите вероятность того, что цифры на красном и синем кубиках совпадут.
  2. В этом же эксперименте с кубиками нужно найти наиболее вероятную сумму цифр на кубиках.
  3. Наудачу выбирается одно число от 1 до 20. Считая все числа равновозможными, определите вероятность того, что выбранное число:
    • чётно;
    • делится на 3;
    • делится и на 2, и на 3;
    • не делится ни на 2, ни на 3;
    • имеет сумму цифр 9;
    • имеет сумму цифр, делящуюся на 3.
Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть и — два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей и , другими словами , событие также называют суммой событий и и обозначают . Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых от общего числа, а жёлтых — . Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке шаров, то рассматриваемому событию соответствует шаров, т.е. от общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию , выражается, как (если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число от 1 до 100. Рассмотрим следующие события:

  1. число чётно;
  2. число нечётно;
  3. число делится на 4;
  4. число имеет остаток 2 при делении на 4;
  5. число имеет остаток 1 при делении на 4.

Формула включений и исключений

Как определить вероятность суммы двух событий, которые не являются несовместными? Рассмотрим следующий пример. Среди учеников школы процентов знают французский язык и знают немецкий. Доля тех, кто владеет обоими языками всего . Какова доля учеников, знающих хотя бы один из этих двух языков? Если нарисовать диаграмму, если мы сложим доли знающих французский и знающих немецкий, то мы дважды посчитаем тех, кто знает оба языка. Поэтому ответ: .

Этот же вопрос можно сформулировать и на языке теории вероятностей: с какой вероятностью случайно выбранный школьник знает хотя бы один из двух языков? Аналогичное рассуждение приводит нас к следующей формуле:

где — это пересечение событий и , т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в , и в (такое событие также называют произведением событий и и обозначают ).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Снова рассмотрим задачу про учеников и иностранные языки. Какая доля среди школьников знающих немецкий знает и французский? Ответ легко вычислить, посмотрев на картинку. Нужно вычислить отношение количества школьников знающих оба языка к количеству школьников знающих немецкий, т.е. . Переходя к языку теории вероятностей можно задаться следующим вопросом: какова вероятность, что случайно выбранный школьник знает французский при условии, что он знает немецкий? Пусть события и соответствуют тому, что случайно выбранный школьник знает французский и немецкий соответственно. Тогда искомая вероятность называется условной вероятностью наступления при условии и обозначается . По аналогии получаем следующую формулу для условной вероятности:

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

Словами: чтобы найти вероятность того, что произойдут оба события и , надо умножить вероятность события на условную вероятность события при известном .

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

Рассмотрим эксперимент с бросанием двух игральных кубиков: красного и синего. В этом эксперименте имеются 36 исходов, которые мы считаем равновозможными. Вероятность того, что на красном кубике выпадет тройка, равна (6 исходов из 36), вероятность того, что на синем кубике выпадет тройка, тоже равна . Какова вероятность того, что на синем кубике выпадет тройка при условии, что на красном выпала тройка? По формуле условной вероятности нужно посчитать отношение вероятности выпадения тройки на обоих кубиках к вероятности выпадения тройки на красном. Получаем . Заметим, что наличие информации о том, что на красном кубике выпала тройка, никак не влияет на вероятность выпадения тройки на синем. Такие события будем называть независимыми. Будем говорить, что события и независимы, если

(В этом определении предполагаются, что обе вероятности событий и строго больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Задачи для самопроверки
  1. Являются ли события «знать немецкий» и «знать французский» независимыми?
  2. Бросаем один игральный кубик. Являются ли независимыми события:
    1. «выпало чётное» и «выпало нечётное»,
    2. «выпало чётное» и «выпало 2»,
    3. «выпало чётное» и «выпало кратное трём».

    И подставив это в определение получаем формулу Байеса

    которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

    На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

    Когда мы можем говорить о вероятности?

    Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

    Какова вероятность того, что гуляя по улице вы встретите динозавра?

    Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

    Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

    Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

    Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

    Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

    Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

    Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

    Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% 🙂

    Парадоксы

    В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

    Парадокс Монти-Холла

    Этот очень известный парадокс. Об него было сломано много копий, в том числе даже именитые математики давали неправильный ответ.

    Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

    Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

    1. автомобиль равновероятно размещён за любой из трёх дверей;
    2. ведущий знает, где находится автомобиль;
    3. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    4. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

    Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов , соответствующим номеру двери, за которым находится автомобиль, и вероятностями . Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим , и «сменить дверь», обозначим .

    Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через дверь, которую игрок выбрал изначально, а через — дверь, за которой спрятан автомобиль. Тогда для любого событие «игрок выиграл при использовании стратегии » соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие , т.е. , и его вероятность . Событие «игрок выиграл при использовании стратегии » соответствует противоположному событию , т.е. , и его вероятность . Осталось ещё раз отметить, что, если этот анализ верен для любого выбора , поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

    Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

    Парадокс мальчика и девочки

    Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

    • У мистера Джонса двое детей. Старший ребёнок — девочка. Какова вероятность того, что оба ребёнка — девочки?
    • У мистера Смита двое детей. Хотя бы один ребёнок — мальчик. Какова вероятность того, что оба ребёнка — мальчики?

    Вероятностное пространоство задано и все вероятности равны . В первом случае нам известно, что выполнено событие . Поэтому при условии вероятность двух девочек равна 1/2.

    Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

    1. Выбирается случайный человек с двумя детьми и его спрашивают, есть ли среди его детей мальчик. Тогда вероятность двух мальчиков получится 1/3, т.к. это соответствует вероятности ММ при условии события .
    2. Выбирается случайный человек с двумя детьми, выбирается случайный его ребёнок (старший или младший) и спрашивается его пол. Этот эксперимент соответствует другому вероятностному пространству, в котором нужно ещё учесть выбор того ребёнка, про которого спрашивают. В нём будет 8 элементарных исходов, и нам подойдут четыре из них (ММ и спросили про старшего, ММ и спросили про младшего, МД и спросили про старшего, ДМ и спросили про младшего). Нам подходят два исхода, поэтому ответом будет 1/2.

    Парадокс Спящей Красавицы

    Обсуждение этого парадокса мотивировано вот этим постом на хабре, который вызвал широкое обсуждение, но описание этого парадокса есть и в википедии.

    Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

    Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

    Предлагается рассмотреть два альтернативных решения с разными результатами.

    Решение 1

    У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна .

    Решение 2

    Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна .

    Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

    Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

    Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

    Задача для самопроверки

    Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

    Бесконечный случай

    Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

    Вместо заключения

    Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

    БОНУС

    Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

    Теория вероятностей: как научиться предсказывать случайные события

    Разбираем основные понятия, решаем задачи и делаем первый шаг на пути к карьере в data science.

    Кадр: фильм «Сумерки. Сага. Затмение» / West Video

    Дмитрий Зверев

    Дмитрий Зверев

    Любитель научной фантастики и технологического прогресса. Хорошо сочетает в себе заумного технаря и утончённого гуманитария. Пишет про IT и радуется этому.

    Продолжаем разбираться с математическими концепциями, на которых держится современное IT. Сегодня поговорим о теории вероятностей — разделе математики, который широко используется в машинном обучении, геймдеве, статистике и науке о данных.

    Из этой статьи вы узнаете:

    • Что такое теория вероятностей
    • Какие понятия в неё входят
    • Что такое алгебра событий
    • По каким формулам она работает
    • Как решать задачи по теории вероятностей

    Что такое теория вероятностей

    Теория вероятностей — это наука, которая изучает мир случайностей и пытается их предсказать. Здесь встречаются такие понятия, как «события» и «вероятности», у которых, в свою очередь, есть свои свойства и операции — о них мы поговорим чуть позже.

    Проще всего продемонстрировать, как работает теория вероятностей, на примере подбрасывания монетки. В этом случае у нас есть два варианта: орёл или решка, а значит, шанс выпадения каждой из сторон одинаковый и составляет 50%.

    Но как убедиться, что это действительно так? Например, я могу подбросить монетку десять раз, и мне магическим образом девять раз подряд выпадет орёл и один раз решка. Значит ли это, что шанс выпадения орла — 90%? Конечно, нет — и у этого есть научное объяснение.

    Дело в том, что теория вероятностей рассматривает случайные события в рамках бесконечности. Иными словами, если мы будем подбрасывать монетку бесконечное количество раз, то шансы выпадения орла или решки будут приближаться к 50%.

    В математике такая закономерность называется законом больших чисел, и этот закон — один из фундаментальных для data science. Фишка в том, что чем больше данных мы имеем на руках, тем точнее можно делать предсказания. Подробнее об этом читайте в статье «Математика для джунов».

    Такая же логика работает и для других случайных явлений — например, шанс выпадания числа 5 на игральном кубике равен 1 к 6, а вероятность того, что молния ударит в одно и то же место дважды — примерно 1 к 500.

    Теория вероятностей помогает нам предсказывать шанс возникновения различных событий, когда ответ не такой однозначный и на события влияет множество факторов.

    Основные понятия

    Мы упомянули слова «событие» и «вероятность», но не рассказали, что они вообще значат в контексте теории вероятностей. Давайте разбираться.

    События

    Событие — это всё, что может произойти, когда мы совершаем какое-то действие. Например, если мы бросаем монетку, то событие — это выпадение орла или решки. Чтобы обозначать события, используют заглавные буквы латинского алфавита. Например, для орла можем выбрать букву A, а для решки — B.

    Существует много разных видов и классификаций событий, но в этой статье мы остановимся на основных четёрых:

    • Достоверные — те, которые точно произойдут. Если бросить стакан на пол, то с вероятностью 100% он полетит вниз.
    • Невозможные — те, которые никогда не произойдут. Если бросить тот же стакан на пол, то он никогда не полетит вверх (мораль: не стоит бросать стаканы на пол, если, конечно, вы не на МКС).
    • Случайные — те, которые могут произойти, а могут и не произойти. Например, если мы бросаем игральный кубик, то не можем с уверенностью сказать, что выпадет число 2.
    • Несовместимые — те, которые исключают друг-друга. Например, при подбрасывании монетки может выпасть либо орёл, либо решка — оба одновременно они выпасть не могут.

    Если собрать все несовместимые события вместе, они будут называться полной группой событий. Это множество событий, одно из которых обязательно случится, если мы совершаем действие, а другие — не произойдут никогда. Например, когда мы бросаем игральный кубик, может выпасть только одна из сторон.

    Вероятности

    Вероятность — это число, которое обозначает шанс возникновения события. Например, вероятность выигрыша в лотерею может составлять 1 к 1 000 000.

    Мы записывали значения вероятностей в процентах и отношениях, но математикам удобнее располагать их в диапазоне от 0 до 1. Если вероятность равна 0, то событие никогда не произойдёт, а если 1 — точно произойдёт. Всё, что посередине, — это случайные события.

    Самый простой способ вычислить вероятность — поделить число благоприятных событий на общее число возможных событий. Например, если всего в колоде 36 карт, а мы хотим достать короля пик, то вероятность этого события равна 1/36, или 0,03. Если бы нас устроил любой из королей, то вероятность была бы равна 4/36 — то есть 0,1.

    К формулам мы ещё вернёмся, а пока отметим, что вероятность — это не всегда точное предсказание, а лишь оценка шанса возникновения события. Как следует из закона больших чисел, если шанс выпадения орла и решки равен 50%, это не означает, что они будут выпадать по очереди.

    Ещё вероятность может быть условной — или зависеть от другого события. Например, если мы хотим вытащить любой туз из колоды карт, шанс равен 4/36. Но если до этого кто-то уже вытащил одного туза, то вероятность будет равна 3/35. Это потому, что в колоде стало на одну карту меньше и количество благоприятных событий тоже уменьшилось.

    С определениями закончили — теперь давайте узнаем, как событиями можно управлять.

    Что такое алгебра событий

    Когда мы считаем вероятности, нас может устраивать более чем один результат событий. Или другая ситуация — нам может быть важно, чтобы два события выполнялись вместе. В таких случаях на помощь приходит алгебра событий. Разбираемся, какие действия она позволяет совершать.

    Дисклеймер: в этом разделе мы не рассматриваем вычитание и дополнение событий, потому что они довольно сложны для первого знакомства с теорией вероятностей. Возможно, скоро мы выпустим о них отдельную статью.

    Сложение (объединение) событий

    Сумма двух событий A + B — это сложное событие, которое произойдёт, если случится или событие A, или событие B, или оба одновременно.

    Допустим, мы хотим вычислить вероятность выпадения на кубике стороны с числами 2 или 4. Обозначим событие «выпадение стороны 2» как A, а событие «выпадение стороны 4» как B. Так как у кубика всего шесть граней, вероятность выпадения каждой из этих сторон равна 1/6.

    А так как нас интересует либо событие A, либо событие B, мы ищем сумму этих событий — A + B. Вычисляем соответствующие вероятности:

    Получается, что шанс выпадения стороны 2 или 4 при броске кубика равен 2 к 6, или 1 к 3, или 33%.

    Правило сложения можно применять не только к двум событиям, но и к любому их количеству. Например, событие A + B + C + D произойдёт, если случится хотя бы одно из событий A, B, C, D или одна из их комбинаций, такая как A и C или A, C и D.

    Умножение (пересечение) событий

    Произведение событий A и B — это событие A × B, которое произойдёт, если случится и событие A, и событие B.

    Допустим, мы бросаем монетку два раза и хотим понять, каков шанс, что оба раза выпадет решка. Напомним, что вероятность выпадения решки — 1/2.

    Обозначаем события: A — решка выпадает первый раз, B — решка выпадает второй раз. Считаем вероятности:

    Получаем, что шанс выпадения решки два раза подряд — 25%.

    Как в случае с суммой, произведение событий можно считать для любого количества разных событий. Давайте продолжим пример с монеткой — теперь мы хотим, чтобы она выпала четыре раза подряд.

    Добавляем два новых обозначения: C — решка выпадает третий раз, D — решка выпадает четвёртый раз. Вероятности всё те же, считаем их произведение:

    Ответ — шанс выпадения решки четыре раза подряд равен 1 к 16, или 6,25%.

    Сложение совместимых событий

    Когда мы говорили о сложении вероятностей, мы использовали несовместимые события, поскольку при броске кубика может выпасть только одна сторона (или ребро, если вам сильно повезёт).

    Теперь, когда мы познали тонкости вероятностного умножения, можно разобраться с тем, как складывать совместимые события. В этом случае из суммы двух событий нужно просто вычесть их произведение. Формула выглядит так:

    P (A + B) = P (A) + P (B) — P (A ⋅ B)

    Примером такого сложения может быть выбор случайных чисел. Допустим, у нас есть набор чисел от 1 до 10 и мы хотим найти вероятность того, что выбранное число будет или нечётным, или делиться на 7 без остатка.

    • Событие A — число нечётное. Вероятность выбрать именно его — 5/10.
    • Событие B — число делится на 7 без остатка. Вероятность — 1/10.

    Так как число 7 удовлетворяет обоим условиям, мы имеем дело с совместимыми событиями — то есть они могут происходить одновременно. Подключаем формулу: сначала находим сумму вероятностей, а потом вычитаем из неё вероятность пересечения. Внимание на экран:

    Вуаля! Получается, что шанс выполнения одного из двух событий равен 11/20, или 55%.

    На этом с алгеброй событий закончим и перейдём к более классическим формулам. Но не пугайтесь, мы всё подробно объясним.

    Ещё несколько формул теории вероятностей

    Для начала — универсальная формула. Выглядит она так:

    Разберёмся, что значат все эти буквы:

    • Функция P вычисляет вероятность того, что произойдёт событие, которое нас устраивает (A);
    • n обозначает общее число возможных событий;
    • m — число благоприятных исходов.

    Например, попробуем вычислить по этой формуле вероятность выпадения решки:

    Всё в порядке, формула работает.

    Давайте усложним задачу: посчитаем вероятность того, что решка выпадет три раза. Для этого нужно разбить событие на несколько уникальных — например, выпадение решки при первом, втором и третьем бросках. Обозначим эти события как B, C и D.

    Так как эти события зависимы друг от друга, нам нужно их перемножить — для этого подставляем в нашу формулу числа:

    Всё верно — вероятность посчитали правильно.

    Из этой формулы можно сделать несколько выводов:

    • Если вероятность равна единице — значит, она достоверная. Смысл в том, что из общего числа событий нам подходят все — то есть событие точно произойдёт.
    • Если вероятность равна нулю — значит, она невозможная. Всё из-за того, что нам не подходит ни одно из имеющихся событий.
    • Если вероятность находится в диапазоне от нуля до единицы — она случайная. Это значит, что общее число результатов больше нуля, но не все из них нам подходят.

    Теперь вы знаете достаточно, чтобы решать простые задачи по теории вероятностей, чем мы и займёмся в следующем разделе.

    Решаем задачи по теории вероятностей

    При решении задач используйте главную формулу теории вероятностей, а также формулы сложения и произведения вероятности событий.

    Задача 1. В колоде 52 карты. Мы решили вытащить из неё одну — найдите вероятность того, что это будет туз.

    • Число всех возможных событий — 52, так как в колоде 52 карты.
    • Число благоприятных событий — четыре, так как всего в колоде четыре туза.

    Вычислим вероятность того, что из всех карт нам попадётся именно туз:

    Теперь посчитаем сумму благоприятных событий:

    Ответ: 4/52, или 1/13.

    Задача 2. В кармане лежит шесть монет: две рублёвых, две пятирублёвых и две десятирублёвых. Мы по очереди достаём две из них случайным образом. Найдите вероятность того, что они обе будут одного номинала.

    Сначала мы достаём первую монету. Это может быть или рубль, или пять, или десять. Получается, вероятность достать монету любого номинала — 1/3.

    Теперь достаём вторую монету — она должна быть того же номинала, что и первая. Так как только одна из них удовлетворяет нашим критериям, вероятность этого составляет 1/5. А так как наши события связаны друг с другом, перемножаем вероятности обоих:

    Ответ: 1/15.

    Задача 3. Вы бросаете игральные кости с шестью сторонами. Найдите вероятность того, что сумма выпавших очков будет равна 7.

    Всего существует шесть различных комбинаций, которые дают сумму 7:

    Общее число возможных результатов при бросании двух костей равно 6 × 6 = 36. Подставляем наши значения в формулу:

    Ответ: 6/36, или 1/6.

    Что дальше

    В этой статье мы разобрались с базовыми понятиями теории вероятностей. Если хотите лучше разбираться в вопросе, хорошие лекции можно найти здесь и здесь. А на этом бесплатном курсе теория даётся сразу с примерами и упражнениями — полезно, если хотите отточить знания на практике.

    Для общего развития можно почитать нашу статью «Математика для джунов» и статью о том, как устроена случайность в играх. А если вы всерьёз нацелены вкатиться в data science и хотите подтянуть математический бэкграунд, для вас есть курс «Основы математики для Data Science».

    Читайте также:

    • Интегралы: всё, что вы хотели знать, без интриг и сложных терминов
    • Заняться фронтенд-разработкой в 12 лет, выиграть IT‑чемпионат в 13: история Али Сулейманова
    • Чем различается фронтенд- и бэкенд-разработка

    Букву P используют потому, что на английский язык слово «вероятность» переводится как probability.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *