Хэш код
Хеширование (иногда хэширование, англ. hashing ) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest ).
Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.
В общем случае однозначного соответствия между исходными данными и хеш-кодом нет. Поэтому существует множество массивов данных, дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке «качества» хеш-функций.
Контрольные суммы
Основная статья: Контрольная сумма
Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.
По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.
Платой за столь высокую скорость является отсутствие криптостойкости — легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.
Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.
Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в аппаратуре ZIP.
Криптографические хеш-функции
Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:
- Стойкость к коллизиям первого рода: для заданного сообщения
должно быть практически невозможно подобрать другое сообщение
, имеющее такой же хеш. Это свойство также называется необратимостью хеш-функции.
- Стойкость к коллизиям второго рода: должно быть практически невозможно подобрать пару сообщений
, имеющих одинаковый хеш.
Согласно парадоксу о днях рождения, нахождение коллизии для хеш-функции с длиной значений n бит требует в среднем перебора около 2 n / 2 операций. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для нее близка к 2 n / 2 .
Простейшим (хотя и не всегда приемлемым) способом усложнения поиска коллизий является увеличение разрядности хеша, например, путем параллельного использования двух или более различных хеш-функций.
Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов шифрования, хеширующих пользовательский пароль для получения ключа.
Применение хеширования
Хеш-функции также используются в некоторых структурах данных — хеш-таблицаx и декартовых деревьях. Требования к хеш-функции в этом случае другие:
- хорошая перемешиваемость данных
- быстрый алгоритм вычисления
Сверка данных
В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:
Проверка на наличие ошибок
Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.
Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.
Проверка парольной фразы
В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.
Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP. В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.
Ускорение поиска данных
Основная статья: Хеш-таблица
Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).
Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.
Список алгоритмов
- CRC
- SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
- MD2
- MD5
- RIPEMD-160
- RIPEMD-320
- Snefru
- Tiger (Whirlpool
- ГОСТ Р34.11-94 (ГОСТ 34.311-95)
- IP Internet Checksum (RFC 1071)
Ссылки
Wikimedia Foundation . 2010 .
Хеширование
Хеширование — это преобразование информации с помощью особых математических формул. В результате возникает хеш — отображение данных в виде короткой строки, в идеале — уникальной для каждого набора информации. Размер строки может быть одинаковым для информации разного объема.
«IT-специалист с нуля» наш лучший курс для старта в IT
Что такое хеш
Хеш — это не закодированная исходная информация. Это скорее уникальная метка, которая генерируется для каждого набора данных индивидуально. Если захешировать большую книгу и одно слово, получатся хеши одинаковой длины. А если изменить в слове одну букву и снова захешировать полученную строку, новый хеш будет совершенно другим, там не окажется участков, которые повторяли бы предыдущий.
Хеш-функция — это математический алгоритм, по которому хешируется информация. Его название тоже иногда сокращают как «хеш». Хеш-функций существует очень много, они различаются методами вычислений, назначением, надежностью и другими параметрами.
Профессия / 8 месяцев
IT-специалист с нуля
Попробуйте 9 профессий за 2 месяца и выберите подходящую вам
Кто работает с хешированием
- IT-специалисты, разработки которых хранят чувствительную конфиденциальную информацию. Например, в веб-разработке хеши обычно нужны для проверки паролей. Вместо них на сервере хранятся хеши, а когда пользователь вводит пароль, тот автоматически хешируется, и хеш сравнивается с сохраненным на сервере.
- Разработчики, имеющие дело со сложными структурами данных, такими как ассоциативные массивы и хеш-таблицы.
- Люди, которые имеют дело с криптовалютой. В этой сфере активно используется хеширование как удобный способ проверки подлинности данных. На алгоритмах хеширования во многом построен блокчейн.
- Этичные хакеры и специалисты по информационной безопасности для обеспечения конфиденциальности данных или, наоборот, для проверки той или иной информации. Например, конкретный вирус можно распознать по характерному хешу.
Читайте также Кто такой «белый» хакер
Для чего нужно хеширование
Основное назначение хеширования — проверка информации. Эта задача важна в огромном количестве случаев: от проверки паролей на сайте до сложных вычислений в блокчейне. Так как хеш — это уникальный код определенного набора данных, по нему можно понять, соответствует ли информация ожидаемой. Поэтому программа может хранить хеши вместо образца данных для сравнения. Это может быть нужно для защиты чувствительных сведений или экономии места.
Вот несколько примеров:
- вместо паролей на сервере хранятся хеши паролей;
- антивирус хранит в базе хеши вирусов, а не образцы самих программ;
- электронная подпись использует хеш для верификации;
- информация о транзакциях криптовалюты хранится в виде кешей;
- коммиты в Git идентифицируются по хешу (подробнее про Git и коммиты можно прочесть в нашей статье).
Среди других, менее распространенных примеров использования — поиск дубликатов в больших массивах информации, генерация ID и построение особых структур данных. Это, например, хеш-таблицы — в них идентификатором элемента является его хеш, и он же определяет расположение элемента в таблице.
Как работает хеш-функция
Возможных преобразований для получения хеша бесконечное количество. Это могут быть формулы на основе умножения, деления и других операций, алгоритмы разного уровня сложности. Но если хеш применяется для защиты данных, его функция должна быть криптографической — у таких хеш-функций есть определенные свойства. Именно криптографические хеш-функции используются, например, при хранении паролей.
Если говорить о криптографической хеш-функции, то она чаще всего работает в несколько шагов. Данные разбиваются на части и проходят через сжимающую функцию, которая преобразовывает информацию в меньшее количество бит. Функция должна быть криптостойкой — такой, результат которой практически невозможно вскрыть.
А вот хеш-функции для более простых случаев, например построения таблиц, не обязаны быть криптографическими. Там преобразования могут быть проще.
Курс для новичков «IT-специалист
с нуля» – разберемся, какая профессия вам подходит, и поможем вам ее освоить
Свойства криптографических хеш-функций
Необратимость. Из хеша нельзя получить исходные данные даже теоретически. Слишком много информации отбрасывается в процессе; это не зашифровка информации.
Детерминированность. Если подать хеш-функции одинаковые данные, то и хеш у них будет одинаковым. Именно это свойство позволяет использовать хеши для проверки подлинности информации.
Уникальность. Идеальная хеш-функция выдает стопроцентно уникальный результат для каждого возможного набора данных. В реальности такое невозможно, и иногда случаются коллизии — одинаковые хеши для разных сведений. Но существующие хеш-функции достаточно сложны, поэтому вероятность коллизии сводится к минимуму.
Разнообразие. Даже если два набора информации различаются одним-двумя символами, их хеши будут кардинально разными. У них не будет общих блоков, по ним невозможно будет понять, что исходные данные схожи.
Высокая скорость генерации. Это в целом свойство любых хешей: в отличие от зашифрованных версий файлов, они генерируются быстро, даже если входной массив данных большой.
Профессия / 13 месяцев
«Белый» хакер
Взламывайте ПО безнаказанно и за оплату
Безопасность криптографической хеш-функции
Цель использования хешей — обеспечить безопасность пользователей. Идентификация или проверка подлинности данных нужны, чтобы никто не мог воспользоваться чувствительной информацией в своих целях. Поэтому специалисты пользуются именно криптографическими хеш-функциями. Они должны быть безопасными — так, чтобы никто не мог взломать их.
Идеальная криптографическая хеш-функция полностью отвечает перечисленным ниже требованиям. Реальные не могут ответить им на 100%, поэтому задача их создателей — максимально приблизиться к нужным свойствам.
Стойкость к коллизиям. Выше мы писали, что коллизия — явление, когда у двух разных наборов данных получается одинаковый хеш. Это небезопасно, потому что так злоумышленник сможет подменить верную информацию неверной. Поэтому коллизий стремятся максимально избегать.
Современные криптографические хеш-функции не полностью устойчивы к коллизиям. Но так как они очень сложные, для поиска коллизии нужно огромное количество вычислений и много времени — годы или даже столетия. Задача такого поиска становится практически невыполнимой.
Стойкость к восстановлению данных. Частично это означает все ту же необратимость, о которой мы писали выше. Но восстановить данные в теории можно не только с помощью обратной функции — еще есть метод подбора. Стойкость к восстановлению данных подразумевает, что, даже если злоумышленник будет очень долго подбирать возможные комбинации, он никогда не сможет получить исходный массив информации.
Это требование выполняется для современных функций. Информации в мире настолько много, что полный перебор всех возможных комбинаций занял бы бесконечно большое количество времени.
Устойчивость к поиску первого и второго прообраза. Первый прообраз — как раз возможность найти обратную функцию. Такой возможности нет, ведь криптографическая хеш-функция необратима. Этот пункт пересекается с требованием стойкости к восстановлению данных.
Второй прообраз — почти то же самое, что нахождение коллизии. Разница только в том, что в случае со вторым прообразом ищущий знает и хеш, и исходные данные, а при поиске коллизии — только хеш. Хеш-функция, неустойчивая к поиску второго прообраза, уязвима: если злоумышленник будет знать исходные данные, он сможет подменить информацию.
Криптографические хеш-функции устойчивы к поиску второго прообраза потому же, почему они считаются стойкими к коллизиям. Вычисления для нахождения таких данных слишком сложные и длительные, чтобы задача была реальной.
IT-специалист с нуля
Наш лучший курс для старта в IT. За 2 месяца вы пробуете себя в девяти разных профессиях: мобильной и веб-разработке, тестировании, аналитике и даже Data Science — выберите подходящую и сразу освойте ее.
Что такое хеш и для чего он нужен?
Что такое хеш?Хеш-функцией называется математическое преобразование информации в короткую, определенной длины строку.
Зачем это нужно?Анализ при помощи хеш-функций часто используют для контроля целостности важных файлов операционной системы, важных программ, важных данных. Контроль может производиться как по необходимости, так и на регулярной основе.
Как это делается?Вначале определяют, целостность каких файлов нужно контролировать. Для каждого файла производится вычисления значения его хеша по специальному алгоритму с сохранением результата. Через необходимое время производится аналогичный расчет и сравниваются результаты. Если значения отличаются, значит информация содержащаяся в файле была изменена.
Какими характеристиками должна обладать хеш-функция?
- должна уметь выполнять преобразования данных произвольной длины в фиксированную;
- должна иметь открытый алгоритм, чтобы можно было исследовать её криптостойкость;
- должна быть односторонней, то есть не должно быть математической возможности по результату определить исходные данные;
- должна «сопротивляться» коллизиям, то есть не должна выдавать одинаковых значений при разных входных данных;
- не должна требовать больших вычислительных ресурсов;
- при малейшем изменении входных данных результат должен существенно изменяться.
Какие популярные алгоритмы хеширования?В настоящее время используются следующие хеш-функции:
- CRC – циклический избыточный код или контрольная сумма. Алгоритм весьма прост, имеет большое количество вариаций в зависимости от необходимой выходной длины. Не является криптографическим!
- MD 5 – очень популярный алгоритм. Как и его предыдущая версия MD 4 является криптографической функцией. Размер хеша 128 бит.
- SHA -1 – также очень популярная криптографическаяфункция. Размер хеша 160 бит.
- ГОСТ Р 34.11-94 – российский криптографический стандарт вычисления хеш-функции. Размер хеша 256 бит.
Когда эти алгоритмы может использовать системный администратор? Часто при скачивании какого-либо контента, например программ с сайта производителя, музыки, фильмов или другой информации присутствует значение контрольных сумм, вычисленных по определенному алгоритму. Из соображений безопасности после скачивания необходимо провести самостоятельное вычисление хеш-функции и сравнить значение с тем, что указано на сайте или в приложении к файлу. Делали ли вы когда-нибудь такое?
Чем удобнее рассчитывать хеш?Сейчас существует большое количество подобных утилит как платных, так и свободных для использования. Мне лично понравилась HashTab . Во-первых, утилита при установке встраивается в виде вкладки в свойства файлов, во-вторых, позволяет выбирать большое количество алгоритмов хеширования, а в третьих является бесплатной для частного некоммерческого использования.
Что есть российского? Как было сказано выше в России есть стандарт хеширования ГОСТ Р 34.11-94, который повсеместно используется многими производителями средств защиты информации. Одним из таких средств является программа фиксации и контроля исходного состояния программного комплекса «ФИКС». Эта программа является средством контроля эффективности применения СЗИ.
Производитель — Центр безопасности информации . Привожу краткое описание возможностей программы.
ФИКС (версия 2.0.1) для Windows 9x/NT/2000/XP
- Вычисление контрольных сумм заданных файлов по одному из 5 реализованных алгоритмов.
- Фиксация и последующий контроль исходного состояния программного комплекса.
- Сравнение версий программного комплекса.
- Фиксация и контроль каталогов.
- Контроль изменений в заданных файлах (каталогах).
- Формирование отчетов в форматах TXT, HTML, SV.
- Изделие имеет сертификат ФСТЭК по НДВ 3 № 913 до 01 июня 2013 г.
А как на счет ЭЦП? Результат вычисления хеш-функции вместе с секретным ключом пользователя попадает на вход криптографического алгоритма, где и рассчитывается электронно-цифровая подпись. Строго говоря, хеш-функция не является частью алгоритма ЭЦП, но часто это делается специально, для того, чтобы исключить атаку с использованием открытого ключа.
В настоящее время многие приложения электронной коммерции позволяют хранить секретный ключ пользователя в закрытой области токена ( ruToken , eToken ) без технической возможности извлечения его оттуда. Сам токен имеет весьма ограниченную область памяти, измеряемую в килобайтах. Для подписания документа нет никакой возможности передать документ в сам токен, а вот передать хеш документа в токен и на выходе получить ЭЦП очень просто.
Чудеса хеширования
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?
Brian Donohue
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.
Что такое хеш?
Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.
Как работает хеш?
Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.
Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.
Вот как это выглядит, если изобразить все вышесказанное в виде схемы:
Для чего используется хеш?
Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.
Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.
Вы даже можете провести простой эксперимент: попробуйте при помощи специального сайта произвести преобразование какого-нибудь простого пароля вроде «123456» или «password» из их хеш-значений (созданных алгоритмом MD5) обратно в текст. Вероятность того, что в базе хешей найдутся данные о введенных вами простых паролях, очень высока. В моем случае хеши слов «brain» (8b373710bcf876edd91f281e50ed58ab) и «Brian» (4d236810821e8e83a025f2a83ea31820) успешно распознались, а вот хеш предыдущего абзаца — нет. Отличный пример, как раз для тех, кто все еще использует простые пароли.
Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.
Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.
Где еще можно использовать хеш-функции помимо систем хранения паролей и защиты медиафайлов? На самом деле задач, где используется хеширование, гораздо больше, чем я знаю и тем более могу описать в одной статье. Однако есть одна особенная область применения хешей, особо близкая нам как сотрудникам «Лаборатории Касперского»: хеширование широко используется для детектирования зловредных программ защитным ПО, в том числе и тем, что выпускается нашей компанией.
Как при помощи хеша ловить вирусы?
Примерно так же, как звукозаписывающие лейблы и кинопрокатные компании защищают свой контент, сообщество создает списки зловредов (многие из них доступны публично), а точнее, списки их хешей. Причем это может быть хеш не всего зловреда целиком, а лишь какого-либо его специфического и хорошо узнаваемого компонента. С одной стороны, это позволяет пользователю, обнаружившему подозрительный файл, тут же внести его хеш-код в одну из подобных открытых баз данных и проверить, не является ли файл вредоносным. С другой — то же самое может сделать и антивирусная программа, чей «движок» использует данный метод детектирования наряду с другими, более сложными.
Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.
Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.