Что такое матрицы, откуда они взялись, и чем они полезны?
Первые упоминания о матрицах или «волшебных квадратах», как их тогда называли, были найдены на территории еще Древнего Китая, однако бум случился намного позже, в середине XVIII века, когда знаменитый математик Габриэль Крамер опубликовал свой труд под названием «Введение в анализ алгебраических кривых», в котором описывался алгоритм решения систем линейных уравнений совершенно новым методом.
Как следствие, в дальнейшем появляются «классический» метод решения Карла Фридриха Гаусса, теорема Гамильтона-Кели, работы Карла Вейерштрасса, Георга Фробениуса и других выдающихся ученых.
Занимательно, что только после всех этих открытий, а именно в 1850 году был непосредственно введен термин матрица, автором которого стал Джеймс Джозеф Сильвестр.
У всех на слуху
Сегодня термин «матрица» применяется во множестве разных областей: от программирования до кинематографии (здесь должно быть название фильма, о котором вы все подумали).
Матрица в математике – это таблица чисел, состоящая из определенного количества строк (m) и столбцов (n).
Вы встречаетесь с ними каждый день, так как любая числовая информация, занесенная в таблицу, уже в какой-то степени считается матрицей.
Примером могут служить:
● список телефонных номеров;
● различные статистические данные;
● табель успеваемости ученика и многое другое.
Сами матрицы всегда обозначаются прописными латинскими буквами (A, B, C…), а элементы матрицы – строчными (a, b, c…). Индексы обозначают местоположение элемента матрицы в системе, причем первое число – это всегда номер строки, а второе – это всегда номер столбца. Например, а23 находится во второй строке и в третьем столбце, а31 в третьей строке и первом столбце и т.д.
Важно произносить элементы матриц правильно, так а23 будет звучать как «а два три», а не «а двадцать три».
Примеры записи матриц
Для чего нужны матрицы
Теперь выясним, для чего нам так нужны матрицы конкретно в математике?
В качестве примера рассмотрим простейшую систему двух линейных уравнений и решим ее методом сложения, который изучают в школьном курсе.
Оказывается, можно решить эту систему уравнений альтернативным способом, используя матрицы, и называется он метод Крамера.
Вы можете подумать, зачем усложнять решение какими-то матрицами?
В данном случае да, при желании можно эту систему и в уме решить. Но представьте себе систему, состоящую хотя бы из 5 линейных уравнений с пятью неизвестными. А если система состоит из 6, 7 или ещё больше уравнений? Решать её школьным методом, мягко говоря, трудоёмко. Зато применяя тот же метод Крамера, решение будет выглядеть достаточно компактно.
Система с тремя уравнениями
В подтверждение вышесказанного рассмотрим систему уравнений с тремя неизвестными и решим её метод Крамера.
Из этого следует, что матрицы – еще один способ решения систем линейных алгебраических уравнений (СЛАУ).
На основе второго примера убеждаемся в том, что матрицы могут применяться в тех случаях, когда применение школьных методов решения СЛАУ не является рациональным.
На самом деле за прошедшие столетия алгебра матриц изучена более, чем достаточно, и тот факт, что матрицы используются повсеместно однозначно подтверждает необходимость их изучения.
проходят ли в школе (во всех классах ) матрицы? (математика)
Матрицы изучают при прохождении предмета «Аналитическая геометрия» на первых курсах в ВУЗах.
Остальные ответы
мы не проходили
MİKAУченик (111) 7 лет назад
а зачем тогда в математике ввели матриц если их никто не проходит
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Понятие матрицы
Матрицы в математике — один из важнейших объектов, имеющих прикладное значение. Часто экскурс в теорию матриц начинают со слов: «Матрица — это прямоугольная таблица. «. Мы начнём этот экскурс несколько с другой стороны.
Телефонные книги любого размера и с любым числом данных об абоненте — ни что иное, как матрицы. Такие матрицы имеют примерно следующий вид:
Ясно, что такими матрицами мы все пользуемся почти каждый день. Эти матрицы бывают с различным числом строк (различаются как выпущенный телефонной компанией справочник, в котором могут быть тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может не быть никаких данных, кроме имени, и, таким образом, в ней только два столбца — имя и телефон).
Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать телефонные справочники, от этого нет никакой пользы, к тому же можно и подвинуться рассудком.
Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи. Ниже примеры таких матриц.
Матрицы, в которых столбцы — выпуск единиц продукции того или иного вида, а строки — годы, в которых ведётся учёт выпуска этой продукции:
Можно складывать матрицы такого вида, в которых учтён выпуск аналогичной продукции различными предприятиями, чтобы получить суммарные данные по отрасли.
Или матрицы, состоящие, к примеру, из одного столбца, в которых строки — средняя себестоимость того или иного вида продукции:
Матрицы двух последних видов можно умножать, а в результате получится матрица-строка, содержащая себестоимость всех видов продукции по годам.
Матрицы, основные определения
Прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах, называется mn-матрицей (или просто матрицей) и записывается так:
В матрице (1) числа называются её элементами (как и в определителе, первый индекс означает номер строки, второй – столбца, на пересечении которых стоит элемент; i = 1, 2, . m; j = 1, 2, n).
Матрица называется прямоугольной, если .
Если же m = n , то матрица называется квадратной, а число n – её порядком.
Определителем квадратной матрицы A называется определитель, элементами которого являются элементы матрицы A . Он обозначается символом |A|.
Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.
Матрицы называются равными, если у них одинаковое число строк и столбцов и все соответствующие элементы совпадают.
Матрица называется нулевой, если всё её элементы равны нулю. Нулевую матрицу будем обозначать символом 0 или .
Матрицей-строкой (или строчной) называется 1n-матрица, а матрицей-столбцом (или столбцовой) – m1-матрица.
Матрица A‘ , которая получается из матрицы A заменой в ней местами строк и столбцов, называется транспонированной относительно матрицы A. Таким образом, для матрицы (1) транспонированной является матрица
Операция перехода к матрице A‘ , транспонированной относительно матрицы A, называется транспонированием матрицы A. Для mn-матрицы транспонированной является nm-матрица.
Транспонированной относительно матрицы является матрица A, то есть
Решить задачу на матрицы самостоятельно, а затем посмотреть решение
Пример 1. Найти матрицу A‘ , транспонированную относительно матрицы
и выяснить, равны ли определители исходной и транспонированной матриц.
Главной диагональю квадратной матрицы называется воображаемая линия, соединяющая её элементы, у которых оба индекса одинаковые. Эти элементы называются диагональными.
Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной. Не обязательно все диагональные элементы диагональной матрицы отличны от нуля. Среди них могут быть и равные нулю.
Квадратная матрица, у которой элементы, стоящие на главной диагонали равны одному и тому же числу, отличному от нуля, а все прочие равны нулю, называется скалярной матрицей.
Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице. Например, единичной матрицей третьего порядка является матрица
Пример 2. Даны матрицы:
Установить, какие из них являются неособенными (невырожденными, несингулярными).
Решение. Вычислим определители данных матриц. Пользуясь правилом треугольников, найдём
Определитель матрицы B вычислим по формуле
Легко получаем, что
Следовательно, матрицы A и – неособенные (невырожденные, несингулярные), а матрица B– особенная (вырожденная, сингулярная).
Определитель единичной матрицы любого порядка, очевидно, равен единице.
Решить задачу на матрицы самостоятельно, а затем посмотреть решение
Пример 3. Даны матрицы
Установить, какие из них являются неособенными (невырожденными, несингулярными).
Применение матриц в математико-экономическом моделировании
В виде матриц просто и удобно записываются структурированные данные о том или ином объекте. Матричные модели создаются не только для хранения этих структурированных данных, но и для решения различных задач с этими данными средствами линейной алгебры.
Так, известной матричной моделью экономики является модель «затраты-выпуск», внедрённая американским экономистом русского происхождения Василием Леонтьевым. Эта модель исходит из предположения, что весь производственный сектор экономики разбит на n чистых отраслей. Каждая из отраслей выпускает продукцию только одного вида и разные отрасли выпускают разную продукцию. Из-за такого разделения труда между отраслями существуют межотраслевые связи, смысл которых состоит в том, что часть продукции каждой отрасли передаётся другим отраслям в качестве ресурса производства.
Объём продукции i-й отрасли (измеряемый определённой единицей измерения), которая была произведена за отчётный период, обозначается через и называется полным выпуском i-й отрасли. Выпуски удобно разместить в n-компонентную строку матрицы.
Количество единиц продукции i-й отрасли, которое необходимо затратить j-й отрасли для производства единицы своей продукции, обозначается и называется коэффициентом прямых затрат.
Коэффициенты прямых затрат , среди которых многие могут равняться нулю, удобно записать в nxn матрицу коэффициентов прямых затрат:
Матрица содержит много информации о структуре межотраслевых связей. При этом j-й столбец матрицы полностью характеризует затраты j-й отрасли для производства единицы продукции.
Пример 4. На некоторой благоустроенной исследовательской странции в Арктике действуют три отрасли производства. Первая из них — небольшая электростанция, производящая электроэнергию. Вторая — установка для производства пресной воды из снега. Третья — хлебопекарня.
Записать в матрицу коэффициентов прямых затрат данные о том, что 0,10 единиц электроэнергии расходуется для производства одной единицы электроэнергии, 0,40 единиц электроэнергии расходуется для производства одной единицы пресной воды, 0,30 единиц электроэнергии расходуется для производства одной единицы хлебопродуктов; 0,05 единиц пресной воды расходуется для производства одной единицы электроэнергии, 0 единиц пресной воды расходуется на производство одной единицы пресной воды, 0,20 единиц пресной воды расходуется на производство одной единицы хлебопродуктов; затраты же хлебопродуктов на производство всех видов продукции, включая хлебопродукту равны нулю.
Решение. Записываем коэффициенты затрат каждой отрасли в свою строку: электростанции — в первую, установки для производства пресной воды — во вторую, хлебопекарни — в третью. Получаем искомую матрицу:
Матрицы оказались очень востребованной структурой данных в программировании и вообще в информационных технологиях. В частности, такие объекты, как графы, в памяти компьютера часто задаются в форме матриц смежности и матриц инцидентности. Кроме того, матрицы очень удобны для формализации многих ситуаций в бизнесе и жизни вообще, задачи на которые решаются в теории игр.
В какой математике изучают матрицы
Матрицей называют прямоугольную таблицу, заполненную числами. Важнейшие характеристики матрицы – число строк и число столбцов. Если у матрицы одинаковое число строк и столбцов, ее называют квадратной. Обозначают матрицы большими латинскими буквами.
Сами числа называют элементами матрицы и характеризуют их положением в матрице, задавая номер строки и номер столбца и записывая их в виде двойного индекса, причем вначале записывают номер строки, а затем столбца. Например, a14 есть элемент матрицы, стоящий в первой строке и четвертом столбце, a32 стоит в третьей строке и втором столбце.
Главной диагональю квадратной матрицы называют элементы, имеющие одинаковые индексы, то есть те элементы, у которых номер строки совпадает с номером столбца. Побочная диагональ идет «перпендикулярно» главной диагонали.
Особую важность представляют собой так называемые единичные матрицы. Это квадратные матрицы, у которых на главной диагонали стоят 1, а все остальные числа равны 0. Обозначают единичные матрицы E. Матрицы называют равными, если у них равны число строк, число столбцов, и все элементы, имеющие одинаковые индексы, равны. Матрица называется нулевой, если все ее элементы равны 0. Обозначается нулевая матрица О.
Простейшие действия с матрицами
1. Умножение матрицы на число. Для этого необходимо умножить каждый элемент матрицы на данное число.
2. Сложение матриц. Складывать можно только матрицы одинакового размера, то есть имеющие одинаковое число строк и одинаковое число столбцов. При сложении матриц соответствующие их элементы складываются.
3. Транспонирование матрицы. При транспонировании у матрицы строки становятся столбцами и наоборот. Полученная матрица называется транспонированной и обозначается A T . Для транспонирования матриц справедливы следующие свойства:
4. Умножение матриц. Для произведения матриц существуют следующие свойства:
- Умножать можно матрицы, если число столбцов первой матрицы равно числу строк второй матрицы.
- В результате получится матрица, число строк которой равно числу строк первой матрицы, а число столбцов равно числу столбцов второй матрицы.
- Умножение матриц некоммутативно. Это значит, что от перестановки местами матриц в произведении результат меняется. Более того, если можно посчитать произведение A∙B, это совсем не означает, что можно посчитать произведение B∙A.
- Пусть C = A∙B. Для определения элемента матрицы С, стоящего в i-той строке и k-том столбце необходимо взять i-тую строку первой умножаемой матрицы и k-тый столбец второй. Далее поочередно брать элементы этих строки и столбца и умножать их. Берем первый элемент из строки первой матрицы и умножаем на первый элемент столбца второй матрицы. Далее берем второй элемент строки первой матрицы и умножаем на второй элемент столбца второй матрицы и так далее. А потом все эти произведения надо сложить.
Свойства произведения матриц:
Определитель матрицы
Определителем (детерминантом) квадратной матрицы А называется число, которое обозначается detA, реже |A| или просто Δ, и вычисляется определённым образом. Для матрицы размера 1х1 определителем является сам единственный элемент матрицы. Для матрицы размера 2х2 определитель находят по следующей формуле:
Миноры и алгебраические дополнения
Рассмотрим матрицу А. Выберем в ней s строк и s столбцов. Составим квадратную матрицу из элементов, стоящих на пересечении полученных строк и столбцов. Минором матрицы А порядка s называют определитель полученной матрицы.
Рассмотрим квадратную матрицу А. Выберем в ней s строк и s столбцов. Дополнительным минором к минору порядка s называют определитель, составленный из элементов, оставшихся после вычеркивания данных строк и столбцов.
Алгебраическим дополнением к элементу aik квадратной матрицы А называют дополнительный минор к этому элементу, умноженный на (–1) i+k , где i+k есть сумма номеров строки и столбца элемента aik. Обозначают алгебраическое дополнение Aik.
Вычисление определителя матрицы через алгебраические дополнения
Рассмотрим квадратную матрицу А. Для вычисления ее определителя необходимо выбрать любую ее строку или столбец и найти произведения каждого элемента этой строки или столбца на алгебраическое дополнение к нему. А дальше надо просуммировать все эти произведения.
Когда будете считать алгебраические дополнения, не забывайте про множитель (–1) i+k . Чтобы счет был более простым, выбирайте ту строку или столбец матрицы, который содержит наибольшее число нулей.
Расчет алгебраического дополнения может сводиться к расчету определителя размером более чем 2х2. В этом случае такой расчет также нужно проводить через алгебраические дополнения, и так далее до тех пор, пока алгебраические дополнения, которые нужно будет считать, не станут размером 2х2, после чего воспользоваться формулой выше.
Обратная матрица
Рассмотрим квадратную матрицу А. Матрица A –1 называется обратной к матрице А, если их произведения равны единичной матрице. Обратная матрица существует только для квадратных матриц. Обратная матрица существует, только если матрица А невырождена, то есть ее определитель не равен нулю. В противном случае обратную матрицу посчитать невозможно. Для построения обратной матрицы необходимо:
- Найти определитель матрицы.
- Найти алгебраическое дополнение для каждого элемента матрицы.
- Построить матрицу из алгебраических дополнений и обязательно транспонировать ее. Часто про транспонирование забывают.
- Разделить полученную матрицу на определитель исходной матрицы.
Таким образом, в случае, если матрица А имеет размер 3х3, обратная к ней матрица имеет вид:
Матрицы. Вся теория и задачи с решениями или ответами
ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.
© 2014 — 2023 EDUCON.BY — Физика и Математика — Теория и Задачи.