Учебник по теории вероятностей
Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A \subset B$.
События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.
Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.
Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.
Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:
Если случайные события $A_1, A_2, . A_n$ образуют полную группу несовместных событий, то имеет место равенство $P(A_1)+P(A_2)+. +P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.
Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:
Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.
Примеры решений задач с событиями
Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.
Решение. Обозначим события: А – вынули белый шар из первого ящика,
;
— вынули черный шар из первого ящика,
;
В – белый шар из второго ящика,
;
— черный шар из второго ящика,
.
Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.
Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.
Пусть А – попадание первого стрелка, ;
В – попадание второго стрелка, .
Тогда — промах первого, ;
Найдем нужные вероятности.
а) АВ – двойное попадание,
б) – двойной промах, .
в) А+В – хотя бы одно попадание,
г) – одно попадание,
Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй — 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.
Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.
Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):
$$ P(X)=P\left(\overline \cdot \overline \cdot \overline\right)= q_1 \cdot q_2 \cdot q_3 = 0,6\cdot 0,4 \cdot 0,7 = 0,168. $$
Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):
$$ P(Z)= \\ = P(A_1) \cdot P\left(\overline \right) \cdot P\left(\overline \right) + P\left(\overline\right) \cdot P(A_2) \cdot P\left(\overline \right) + P\left(\overline \right) \cdot P\left(\overline \right) \cdot P(A_3)=\\ = p_1 \cdot q_2 \cdot q_3 + q_1 \cdot p_2 \cdot q_3 + q_1 \cdot q_2 \cdot p_3 =\\ = 0,4\cdot 0,4 \cdot 0,7+0,6\cdot 0,6 \cdot 0,7+0,6\cdot 0,4 \cdot 0,3 = 0,436. $$
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.
А – формула содержится в первом справочнике;
В – формула содержится во втором справочнике;
С – формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Вероятность наступления хотя бы одного события
Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?
Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.
Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, . A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий
$$ P(A)=1-P\left(\overline\right)\cdot P\left(\overline\right)\cdot . \cdot P\left(\overline\right)= 1-q_1 \cdot q_2 \cdot . \cdot q_n. $$
Если события $A_1, A_2, . A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:
Примеры решений на эту тему
Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.
Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:
Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).
Решение. События «машина работает» и «машина не работает» (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.
Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?
Решение. Обозначим через А событие «при n выстрелах стрелок попадает в цель хотя бы один раз». События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .
Приняв во внимание, что, по условию, (следовательно, ), получим
Прологарифмируем это неравенство по основанию 10:
Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.
Теоремы сложения и умножения вероятностей: основные задачи
Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.
Например, на охоте проиведены два выстрела. Событие A — попадание в утку с первого выстрела, событие B — попадание со второго выстрела. Тогда сумма событий A и B — попадание с первого или второго выстрела или с двух выстрелов.
Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.
Сложение вероятностей несовместных событий
Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.
Сумму событий A и B обозначают A + B или A ∪ B. Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B, или одновременно A и B.
Больше о сути логической суммы можно узнать в соответствующем месте статьи «Булева алгебра (алгебра логики)».
Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.
Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:
Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.
Можно рассчитать как классические, так и статистические вероятности.
Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.
Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие — «взят цветной (не белый) мячик». Найдём вероятность события А:
События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».
Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:
Сумма вероятностей противоположных событий также равна 1:
Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.
Вероятности противоположных событий обычно обозначают малыми буквами p и q. В частности,
из чего следуют следующие формулы вероятности противоположных событий:
Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.
Решение: Найдём вероятность того, что стрелок попадёт в цель:
Найдём вероятность того, что стрелок попадёт мимо цели:
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».
Сложение вероятностей взаимно совместных событий
Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.
Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:
Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ. Согласно теореме сложения несовместных событий, вычисляем так:
Событие А наступит, если наступит одно из двух несовместных событий: или АВ. Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:
Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:
При использовании формулы (8) следует учитывать, что события А и В могут быть:
- взаимно независимыми;
- взаимно зависимыми.
Формула вероятности для взаимно независимых событий:
Формула вероятности для взаимно зависимых событий:
Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P(AB) = 0. Четвёртая формула вероятности для несовместных событий такова:
Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:
- вероятность того, что победят обе автомашины;
- вероятность того, что победит хотя бы одна автомашина;
1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:
2) Найдём вероятность того, что победит одна из двух автомашин:
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей — на странице «Различные задачи на сложение и умножение вероятностей».
Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение
Пример 4. Бросаются две монеты. Событие A — выпадение герба на первой монете. Событие B — выпадение герба на второй монете. Найти вероятность события C = A + B .
Умножение вероятностей
Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.
При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.
Логическим произведением двух событий А и В, обозначаемым А ∩ В, называют событие, которое понимают как одновременное наступление событий А и В. Больше о сути логического произведения можно узнать в соответствующем месте статьи «Булева алгебра (алгебра логики)».
Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:
Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.
Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:
Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение
Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?
Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово «конец».
Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.
Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».
Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:
Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.
Решение. Найдём вероятности противоположных событий – того, что груз не будет доставлен одним из видов транспорта:
Теперь у нас есть всё, чтобы найти требуемую в условии задачи вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта:
Решить задачу на умножение вероятностей самостоятельно, а затем посмотреть решение
Пример 11. Из полной колоды карт (52 карты) вынимают одновременно четыре карты. Событие А — среди вынутых карт будет хотя бы одна бубновая. Событие B — среди вынутых карт будет хотя бы одна червонная. Найти вероятность события C = A + B .
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».
Умножение вероятностей взаимно зависимых случайных событий
Если наступление одного события влияет на вероятность наступления второго события, то события называют взаимно зависимыми.
Если события А и В взаимно зависимы, то условной вероятностью называют вероятность события В, принимая, что событие А уже наступило.
Теорема умножения вероятностей взаимно зависимых событий. Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого, то есть вычисляется по формуле:
Пример 12. В ящике 26 лотерейных билетов, из которых 3 с выигрышем. Найти вероятности того, что первый билет будет с выигрышем, вероятность того, что второй билет будет с выигрышем при условии, что первого билета уже нет в ящике и вероятность того, что два взятые подряд билета будут с выигрышем.
Решение. Найдём вероятность того, что первый взятый билет будет с выигрышем:
Найдём вероятность того, что второй взятый билет будет с выигрышем при условии, что первого билета уже нет в ящике:
Найдём теперь вероятность того, что оба взятые подряд билеты будут с выигрышем, т.е. вероятность общего наступления двух зависимых событий, которая является произведением вероятности первого события и условной вероятности второго события:
Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий — на странице «Различные задачи на сложение и умножение вероятностей».
Теорема умножения вероятностей
Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.
$P(A B)=P(A) \cdot P(B | A)$
Событие $A$ называется \lt strong>независимым от события \lt /strong>$B$, если вероятность события $A$ не зависит от того, произошло событие $B$ или нет. Событие $A$ называется зависимым от события $B$, если вероятность события $A$ меняется в зависимости от того, произошло событие $B$ или нет.
Вероятность события $A$, вычисленная при условии, что имело место другое событие $B$, называется \lt strong>условной вероятностью события \lt /strong> $A$ и обозначается $P(A | B)$ .
Условие независимости события $A$ от события $B$ можно записать в виде:
а условие зависимости — в виде:
Следствие 1. Если событие $A$ не зависит от события $B$, то и событие $B$ не зависит от события $A$ .
Следствие 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:
Теорема умножения вероятностей может быть обобщена на случай произвольного числа событий. В общем виде она формулируется так.
Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:
$$P\left(A_ A_ \ldots A_\right)=P\left(A_\right) \cdot P\left(A_ | A_\right) \cdot P\left(A_ | A_ A_\right) \cdots \cdots P\left(A_ | A_ A_ \ldots A_\right)$$
В случае независимых событий теорема упрощается и принимает вид:
$$P\left(A_ A_ \ldots A_\right)=P\left(A_\right) \cdot P\left(A_\right) \cdot P\left(A_\right) \cdot \ldots \cdot P\left(A_\right)$$
то есть вероятность произведения независимых событий равна произведению вероятностей этих событий:
$$P\left(\prod_^ A_\right)=\prod_^ P\left(A_\right)$$
Примеры решения задач
Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара и назад не возвращаются. Найти вероятность того, что оба шара белые.
Решение. Пусть событие $A$ — появление двух белых шаров. Это событие представляет собой произведение двух событий:
где событие $A_1$ — появление белого шара при первом вынимании, $A_2$ — появление белого шара при втором вынимании. Тогда по теореме умножения вероятностей
$$P(A)=P\left(A_ A_\right)=P\left(A_\right) \cdot P\left(A_ | A_\right)=\frac \cdot \frac=\frac=0,1$$
Ответ. $0,1$
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Задание. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара. После первого вынимания шар возвращается в урну, и шары в урне перемешиваются. Найти вероятность того, что оба шара белые.
Решение. В данном случае события $A_1$ и $A_2$ независимы, а тогда искомая вероятность
$$P(A)=P\left(A_ A_\right)=P\left(A_\right) \cdot P\left(A_\right)=\frac \cdot \frac=\frac=0,16$$
Ответ. $0,16$
Теоремы сложения и умножения вероятностей.
Зависимые и независимые события
Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:
Теорема сложения вероятностей несовместных событий: вероятность появления одного из двух несовместных событий или (без разницы какого), равна сумме вероятностей этих событий:
Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :
Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.
Давайте сразу вспомним алгебру событий: сложение событий означает появление хотя бы одного из суммируемых событий, и, поскольку события в данном случае НЕсовместны, то одного и только одного из этих событий (безразлично какого).
Следует отметить, что для совместных событий равенство будет неверным, не случайно чуть выше я немного сыронизировал на счёт простоты. Теорема сложения вероятностей совместных событий имеет гораздо меньшее значение практики
(и более того, может запутать «чайника»), поэтому о ней чуть позже.
А сейчас возьмём в руки уже знакомое и безотказное орудие труда учёбы – игральный кубик с полной группой событий , которые состоят в том, что при его броске выпадут 1, 2, 3, 4, 5 и 6 очков соответственно.
Рассмотрим событие – в результате броска игральной кости выпадет не менее пяти очков. Данное событие состоит в двух несовместных исходах: (выпадет 5 или 6 очков). По теореме сложения вероятностей несовместных событий:
– вероятность того, что в результате броска игральной кости выпадет не менее пяти очков.
Рассмотрим событие , состоящее в том, что выпадет не более 4 очков и найдем его вероятность. По теореме сложения вероятностей несовместных событий:
По той же теореме, вероятность того, что выпадет нечётное число очков:
и так далее.
С помощью рассматриваемой теоремы можно решить некоторые задачи, которые нам встретились на практикуме по классическому определению вероятности. Не поленюсь, кратко перескажу решение 13-го примера вышеуказанного урока:
«Студент знает ответы на 25 экзаменационных вопросов из 60. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на 2 из 3 вопросов?»
В той задаче мы сначала нашли (количество всех возможных сочетаний трёх вопросов), затем вычислили количество благоприятствующих исходов и вероятность того, что студент сдаст экзамен.
Но здесь вместо правила сложений комбинаций в ходу и другая схема рассуждений. Рассмотрим два несовместных события:
– студент ответит на два вопроса из трёх;
– студент ответит на все три вопроса.
Возможно, некоторые читатели ещё не до конца осознали суть несовместности. Вдумаемся ещё раз: студент не может ответить на 2 вопроса из 3 и в то же самое время ответить на все 3 вопроса. Таким образом, события и – несовместны.
Теперь, пользуясь классическим определением, найдём их вероятности:
Факт успешной сдачи экзамена выражается суммой (ответ на 2 вопроса из 3 или на все вопросы). По теореме сложения вероятностей несовместных событий:
– вероятность того, что студент сдаст экзамен.
Этот способ решения совершенно равноценен, выбирайте, какой больше нравится.
Разминаемся в подсобке:
Магазин получил продукцию в ящиках с четырех оптовых складов: четыре с 1-го, пять со 2-го, семь с 3-го и четыре с 4-го. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик с первого или третьего склада.
Решение: всего получено магазином: 4 + 5 + 7 + 4 = 20 ящиков.
В данной задаче удобнее воспользоваться «быстрым» способом оформления без расписывания событий большими латинскими буквами. По классическому определению:
– вероятность того, что для продажи будет выбран ящик с 1-го склада;
– вероятность того, что для продажи будет выбран ящик с 3-го склада.
Бесконечных «хвостов» после запятой тут нет и не ожидается, поэтому можно работать с десятичными дробями – компактнее будет запись.
По теореме сложения несовместных событий:
– вероятность того, что для продажи будет выбран ящик с первого или третьего склада.
Ответ: 0,55
Безусловно, задача разрешима и чисто через классическое определение вероятности путём непосредственного подсчёта кол-ва благоприятствующих исходов (4 + 7 = 11), но рассмотренный способ ничем не хуже. И даже чётче.
Ещё один товар на соседнем стеллаже:
В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?
Аналогично – здесь можно использовать комбинаторное правило суммы, но мало ли … вдруг кто-то его запамятовал, а то и вовсе проехал мимо с песнями. Тогда на помощь придёт теорема сложения вероятностей несовместных событий! Решение и ответ в конце статьи (оформлено в «ускоренном» стиле)
Внимание! Если у вас возникло хоть какое-то недопонимание по вышеизложенному материалу, то настоятельно рекомендую обратиться к предыдущим урокам курса. Ибо не знать азов комбинаторики и не уметь решать типовые задачи на К.О.В. – совсем скверно( В тяжёлом случае следует начать с основ теории вероятностей.
Знакомимся с новыми, до сих пор не встречавшимися понятиями:
Зависимые и независимые события
Начнём с независимых событий. События являются независимыми, если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:
Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:
Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:
– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.
Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий!). Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы. По теореме умножения вероятностей независимых событий:
Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.
Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .
Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:
В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.
Решение: вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:
– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.
По классическому определению:
– соответствующие вероятности.
Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .
По теореме умножения вероятностей независимых событий:
– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.
Ответ: 0,504
После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:
В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.
Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» 😉 Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.
Зависимые события. Событие называют зависимым, если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:
– завтра в 19.00 в продаже будет свежий хлеб.
Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым.
Хлеба… и, как требовали римляне, зрелищ:
– на экзамене студенту достанется простой билет.
Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.
Как определить зависимость/независимость событий?
Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.
Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:
Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий
Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:
Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:
а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.
Решение: вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.
Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.
Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:
а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:
1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.
На языке алгебры событий этот факт запишется следующей формулой:
Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:
– вероятность того, что будет только одно попадание.
б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.
Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.
Способ первый: учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:
попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .
По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.
По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.
Способ второй: рассмотрим противоположное событие: – оба стрелка промахнутся.
По теореме умножения вероятностей независимых событий:
Особое внимание обратите на второй способ – в общем случае он более рационален.
Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.
! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.
Способ третий: события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:
Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.
Ответ:
При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:
Решение: по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:
а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.
б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.
Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.
Ответ:
На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.
Похожие задачи для самостоятельного решения:
Для сигнализации о возгорании установлены два независимо работающих датчика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:
а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу, найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения).
Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.
Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)
Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?
А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.
Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):
Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:
а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.
Решение: коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.
По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:
По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:
. Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)
а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.
б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:
1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или:
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или:
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует.
По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что в течение смены только один станок потребует настройки.
Думаю, сейчас вам должно быть понятно, откуда взялось выражение
в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.
Ответ:
Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .
Далее… …правильно догадываетесь – любимая тема =):
Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.
Решение и ответ в конце урока.
И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.
В заключение статьи разберём ещё одну распространённую головоломку:
Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.
Решение: обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.
И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.
По условию , тогда вероятность противоположного события:
С другой стороны, по теореме умножения вероятностей независимых событий:
– вероятность промаха при каждом выстреле.
В результате:
– вероятность попадания при каждом выстреле.
Ответ: 0,7
Просто и изящно.
В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:
Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания, которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.
Несмотря на кажущуюся шаблонность примеров, целесообразно ознакомиться с дополнительными задачами на теоремы сложения и умножения вероятностей, которые на самом деле достаточно разнообразны. Кроме того, в предложенном файле прорешаны более трудные задачи с «четырьмя участниками».
На следующем уроке мы разберём задачи с зависимыми событиями, а затем важнейшие следствия рассмотренных теорем – формулу полной вероятности, формулы Байеса и формулу Бернулли, касающуюся независимых испытаний.
Везения в главном!
Решения и ответы:
Задача 2: Решение: всего: 10 + 6 = 16 пуговиц в коробке.
способами можно извлечь 2 пуговицы из коробки;
способами можно извлечь 2 красные пуговицы;
способами можно извлечь 2 синие пуговицы.
По классическому определению:
– вероятность того, что из коробки будут извлечены две красные пуговицы;
– вероятность того, что из коробки будут извлечены две синие пуговицы.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что из коробки будут извлечены две одноцветные пуговицы.
Ответ: 0,5
Задача 4: Решение: рассмотрим события: – из 1-й, 2-й и 3-й урны соответственно будет извлечён белый шар. По классическому определению вероятности:
Тогда вероятности извлечения чёрного шара из соответствующих урн равны:
а) Рассмотрим событие: – из каждой урны будет извлечено по 1 белому шару.
Данное событие выражается в виде произведения (из 1-й урны будет извлечён БШ и из 2-й урны будет извлечён БШ и из 3-й урны будет извлечён БШ).
По теореме умножения вероятностей независимых событий:
б) Рассмотрим событие – из каждой урны будет извлечено по 1 чёрному шару.
По теореме умножения вероятностей независимых событий:
Рассмотрим событие – все три шара будут одного цвета. Данное событие состоит в двух несовместных исходах: (будут извлечены 3 белых или 3 чёрных шара)
По теореме сложения вероятностей несовместных событий:
Задача 6: Решение: рассмотрим следующие события:
– при возгорании сработает 1-й датчик;
– при возгорании сработает 2-й датчик.
По условию:
Вычислим вероятности противоположных событий:
а) Рассмотрим событие: – при пожаре оба датчика откажут.
По теореме умножения вероятностей независимых событий:
б) Рассмотрим событие: – при пожаре оба датчика сработают.
По теореме умножения вероятностей независимых событий:
в) Рассмотрим событие: – при пожаре сработает только один датчик.
События образуют полную группу, следовательно:
Проверим результат с помощью прямого вычисления. Событие состоит в 2 несовместных исходах: 1-й датчик сработает и 2-й откажет или 1-й откажет и 2-й сработает. Таким образом: .
По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
Задача 7: Решение: по условию: – вероятность поражения цели первым стрелком при одном выстреле. Тогда вероятность его промаха:
Обозначим через – вероятности попадания и промаха 2-го стрелка.
По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.
По условию , таким образом:
В результате:
Ответ: 0,6
Задача 9: Решение: по условию – вероятности попадания в цель из соответствующих орудий. Тогда соответствующие вероятности промаха:
1) По теореме умножения вероятностей независимых событий:
– вероятность того, что будет три промаха.
Тогда: – вероятность того, что хотя бы один снаряд попадет в цель.
2) Событие «только два снаряда попадут в цель» состоит в трёх несовместных исходах:
попадание из 1-го и 2-го орудий и промах из 3-го или
попадание из 1-го и промах из 2-го и попадание из 3-го орудия или
промах из 1-го и попадание из 2-го и 3-го орудий.
По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только два снаряда попадут в цель.
3) По теореме умножения вероятностей независимых событий:
– вероятность того, что все три снаряда попадут в цель.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что цель будет поражена не менее двух раз
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам,
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено