Как посчитать количество пропусков в pandas
Перейти к содержимому

Как посчитать количество пропусков в pandas

  • автор:

Как подсчитать пропущенные значения в Pandas DataFrame

Часто вас может заинтересовать подсчет количества пропущенных значений в кадре данных pandas.

В этом руководстве показано несколько примеров подсчета пропущенных значений с использованием следующего кадра данных:

import pandas as pd import numpy as np #create DataFrame with some missing values df = pd.DataFrame() #view DataFrame print(df) a b c 0 4.0 NaN 11.0 1 NaN 6.0 8.0 2 NaN 8.0 10.0 3 7.0 14.0 6.0 4 8.0 29.0 6.0 5 12.0 NaN NaN 

Подсчитайте общее количество пропущенных значений во всем DataFrame

В следующем коде показано, как рассчитать общее количество пропущенных значений во всем DataFrame:

df.isnull().sum().sum () 5 

Это говорит нам о том, что всего пропущено 5 значений.

Подсчитайте общее количество пропущенных значений в столбце

В следующем коде показано, как рассчитать общее количество пропущенных значений в каждом столбце DataFrame:

df.isnull().sum () a 2 b 2 c 1 

Это говорит нам:

  • Столбец «а» имеет 2 пропущенных значения.
  • Столбец «b» имеет 2 пропущенных значения.
  • Столбец «c» имеет 1 пропущенное значение.

Вы также можете отобразить количество пропущенных значений в процентах от всего столбца:

df.isnull().sum ()/ len(df)\* 100 a 33.333333 b 33.333333 c 16.666667 

Это говорит нам:

  • 33,33% значений в столбце «а» отсутствуют.
  • 33,33% значений в столбце «b» отсутствуют.
  • 16,67% значений в столбце «c» отсутствуют.

Подсчитайте общее количество пропущенных значений в строке

В следующем коде показано, как рассчитать общее количество пропущенных значений в каждой строке DataFrame:

df.isnull().sum (axis= 1 ) 0 1 1 1 2 1 3 0 4 0 5 2 

Это говорит нам:

  • В строке 1 отсутствует 1 значение.
  • В строке 2 отсутствует 1 значение.
  • В строке 3 отсутствует 1 значение.
  • В строке 4 пропущено 0 значений.
  • Строка 5 имеет 0 пропущенных значений.
  • В строке 6 есть 2 пропущенных значения.

Аналитикам: большая шпаргалка по Pandas

Привет. Я задумывал эту заметку для студентов курса Digital Rockstar, на котором мы учим маркетологов автоматизировать свою работу с помощью программирования, но решил поделиться шпаргалкой по Pandas со всеми. Я ожидаю, что читатель умеет писать код на Python хотя бы на минимальном уровне, знает, что такое списки, словари, циклы и функции.

  1. Что такое Pandas и зачем он нужен
  2. Структуры данных: серии и датафреймы
  3. Создаем датафреймы и загружаем в них данные
  4. Исследуем загруженные данные
  5. Получаем данные из датафреймов
  6. Считаем производные метрики
  7. Объединяем несколько датафреймов
  8. Решаем задачу

Что такое Pandas и зачем он нужен

Pandas — это библиотека для работы с данными на Python. Она упрощает жизнь аналитикам: где раньше использовалось 10 строк кода теперь хватит одной.

Например, чтобы прочитать данные из csv, в стандартном Python надо сначала решить, как хранить данные, затем открыть файл, прочитать его построчно, отделить значения друг от друга и очистить данные от специальных символов.

> with open('file.csv') as f: . content = f.readlines() . content = [x.split(',').replace('\n','') for x in content]

В Pandas всё проще. Во-первых, не нужно думать, как будут храниться данные — они лежат в датафрейме. Во-вторых, достаточно написать одну команду:

> data = pd.read_csv('file.csv')

Pandas добавляет в Python новые структуры данных — серии и датафреймы. Расскажу, что это такое.

Структуры данных: серии и датафреймы

Серии — одномерные массивы данных. Они очень похожи на списки, но отличаются по поведению — например, операции применяются к списку целиком, а в сериях — поэлементно.

То есть, если список умножить на 2, получите тот же список, повторенный 2 раза.

> vector = [1, 2, 3] > vector * 2 [1, 2, 3, 1, 2, 3]

А если умножить серию, ее длина не изменится, а вот элементы удвоятся.

> import pandas as pd > series = pd.Series([1, 2, 3]) > series * 2 0 2 1 4 2 6 dtype: int64

Обратите внимание на первый столбик вывода. Это индекс, в котором хранятся адреса каждого элемента серии. Каждый элемент потом можно получать, обратившись по нужному адресу.

> series = pd.Series(['foo', 'bar']) > series[0] 'foo'

Еще одно отличие серий от списков — в качестве индексов можно использовать произвольные значения, это делает данные нагляднее. Представим, что мы анализируем помесячные продажи. Используем в качестве индексов названия месяцев, значениями будет выручка:

> months = ['jan', 'feb', 'mar', 'apr'] > sales = [100, 200, 300, 400] > data = pd.Series(data=sales, index=months) > data jan 100 feb 200 mar 300 apr 400 dtype: int64

Теперь можем получать значения каждого месяца:

> data['feb'] 200

Так как серии — одномерный массив данных, в них удобно хранить измерения по одному. На практике удобнее группировать данные вместе. Например, если мы анализируем помесячные продажи, полезно видеть не только выручку, но и количество проданных товаров, количество новых клиентов и средний чек. Для этого отлично подходят датафреймы.

Датафреймы — это таблицы. У их есть строки, колонки и ячейки.

Технически, колонки датафреймов — это серии. Поскольку в колонках обычно описывают одни и те же объекты, то все колонки делят один и тот же индекс:

> months = ['jan', 'feb', 'mar', 'apr'] > sales = < . 'revenue': [100, 200, 300, 400], . 'items_sold': [23, 43, 55, 65], . 'new_clients': [10, 20, 30, 40] . >> sales_df = pd.DataFrame(data=sales, index=months) > sales_df revenue items_sold new_clients jan 100 23 10 feb 200 43 20 mar 300 55 30 apr 400 65 40

Объясню, как создавать датафреймы и загружать в них данные.

Создаем датафреймы и загружаем данные

Бывает, что мы не знаем, что собой представляют данные, и не можем задать структуру заранее. Тогда удобно создать пустой датафрейм и позже наполнить его данными.

> df = pd.DataFrame()

А иногда данные уже есть, но хранятся в переменной из стандартного Python, например, в словаре. Чтобы получить датафрейм, эту переменную передаем в ту же команду:

> df = pd.DataFrame(data=sales, index=months))

Случается, что в некоторых записях не хватает данных. Например, посмотрите на список goods_sold — в нём продажи, разбитые по товарным категориям. За первый месяц мы продали машины, компьютеры и программное обеспечение. Во втором машин нет, зато появились велосипеды, а в третьем снова появились машины, но велосипеды исчезли:

> goods_sold = [ . , . , . . ]

Если загрузить данные в датафрейм, Pandas создаст колонки для всех товарных категорий и, где это возможно, заполнит их данными:

> pd.DataFrame(goods_sold) bicycles cars computers soft 0 NaN 1.0 10 3 1 1.0 NaN 4 5 2 NaN 2.0 6 3

Обратите внимание, продажи велосипедов в первом и третьем месяце равны NaN — расшифровывается как Not a Number. Так Pandas помечает отсутствующие значения.

Теперь разберем, как загружать данные из файлов. Чаще всего данные хранятся в экселевских таблицах или csv-, tsv- файлах.

Экселевские таблицы читаются с помощью команды pd.read_excel() . Параметрами нужно передать адрес файла на компьютере и название листа, который нужно прочитать. Команда работает как с xls, так и с xlsx:

> pd.read_excel('file.xlsx', sheet_name='Sheet1')

Файлы формата csv и tsv — это текстовые файлы, в которых данные отделены друг от друга запятыми или табуляцией:

# CSV month,customers,sales feb,10,200 # TSV month\tcustomers\tsales feb\t10\t200

Оба читаются с помощью команды .read_csv() , символ табуляции передается параметром sep (от англ. separator — разделитель):

> pd.read_csv('file.csv') > pd.read_csv('file.tsv', sep='\t')

При загрузке можно назначить столбец, который будет индексом. Представьте, что мы загружаем таблицу с заказами. У каждого заказа есть свой уникальный номер, Если назначим этот номер индексом, сможем выгружать данные командой df[order_id] . Иначе придется писать фильтр df[df[‘id’] == order_id ] .

О том, как получать данные из датафреймов, я расскажу в одном из следующих разделов. Чтобы назначить колонку индексом, добавим в команду read_csv() параметр index_col , равный названию нужной колонки:

> pd.read_csv('file.csv', index_col='id')

После загрузки данных в датафрейм, хорошо бы их исследовать — особенно, если они вам незнакомы.

Исследуем загруженные данные

Представим, что мы анализируем продажи американского интернет-магазина. У нас есть данные о заказах и клиентах. Загрузим файл с продажами интернет-магазина в переменную orders . Раз загружаем заказы, укажем, что колонка id пойдет в индекс:

> orders = pd.read_csv('orders.csv', index_col='id')

Расскажу о четырех атрибутах, которые есть у любого датафрейма: .shape , .columns , .index и .dtypes .

.shape показывает, сколько в датафрейме строк и колонок. Он возвращает пару значений (n_rows, n_columns) . Сначала идут строки, потом колонки.

> orders.shape (5009, 5)

В датафрейме 5009 строк и 5 колонок.

Окей, масштаб оценили. Теперь посмотрим, какая информация содержится в каждой колонке. С помощью .columns узнаем названия колонок:

> orders.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales'], dtype='object')

Теперь видим, что в таблице есть дата заказа, метод доставки, номер клиента и выручка.

С помощью .dtypes узнаем типы данных, находящихся в каждой колонке и поймем, надо ли их обрабатывать. Бывает, что числа загружаются в виде текста. Если мы попробуем сложить две текстовых значения ‘1’ + ‘1’ , то получим не число 2, а строку ’11’ :

> orders.dtypes order_date object ship_mode object customer_id object sales float64 dtype: object

Тип object — это текст, float64 — это дробное число типа 3,14.

C помощью атрибута .index посмотрим, как называются строки:

> orders.index Int64Index([100006, 100090, 100293, 100328, 100363, 100391, 100678, 100706, 100762, 100860, . 167570, 167920, 168116, 168613, 168690, 168802, 169320, 169488, 169502, 169551], dtype='int64', name='id', length=5009)

Ожидаемо, в индексе датафрейма номера заказов: 100762, 100860 и так далее.

В колонке sales хранится стоимость каждого проданного товара. Чтобы узнать разброс значений, среднюю стоимость и медиану, используем метод .describe() :

> orders.describe() sales count 5009.0 mean 458.6 std 954.7 min 0.6 25% 37.6 50% 152.0 75% 512.1 max 23661.2

Наконец, чтобы посмотреть на несколько примеров записей датафрейма, используем команды .head() и .sample() . Первая возвращает 6 записей из начала датафрейма. Вторая — 6 случайных записей:

> orders.head() order_date ship_mode customer_id sales id 100006 2014-09-07 Standard DK-13375 377.970 100090 2014-07-08 Standard EB-13705 699.192 100293 2014-03-14 Standard NF-18475 91.056 100328 2014-01-28 Standard JC-15340 3.928 100363 2014-04-08 Standard JM-15655 21.376

Получив первое представление о датафреймах, теперь обсудим, как доставать из него данные.

Получаем данные из датафреймов

Данные из датафреймов можно получать по-разному: указав номера колонок и строк, использовав условные операторы или язык запросов. Расскажу подробнее о каждом способе.

Указываем нужные строки и колонки

Продолжаем анализировать продажи интернет-магазина, которые загрузили в предыдущем разделе. Допустим, я хочу вывести столбец sales . Для этого название столбца нужно заключить в квадратные скобки и поставить после них названия датафрейма: orders[‘sales’] :

> orders['sales'] id 100006 377.970 100090 699.192 100293 91.056 100328 3.928 100363 21.376 100391 14.620 100678 697.074 100706 129.440 . 

Обратите внимание, результат команды — новый датафрейм с таким же индексом.

Если нужно вывести несколько столбцов, в квадратные скобки нужно вставить список с их названиями: orders[[‘customer_id’, ‘sales’]] . Будьте внимательны: квадратные скобки стали двойными. Первые — от датафрейма, вторые — от списка:

> orders[['customer_id', 'sales']] customer_id sales id 100006 DK-13375 377.970 100090 EB-13705 699.192 100293 NF-18475 91.056 100328 JC-15340 3.928 100363 JM-15655 21.376 100391 BW-11065 14.620 100363 KM-16720 697.074 100706 LE-16810 129.440 . 

Перейдем к строкам. Их можно фильтровать по индексу и по порядку. Например, мы хотим вывести только заказы 100363, 100391 и 100706, для этого есть команда .loc[] :

> show_these_orders = ['100363', '100363', '100706'] > orders.loc[show_these_orders] order_date ship_mode customer_id sales id 100363 2014-04-08 Standard JM-15655 21.376 100363 2014-04-08 Standard JM-15655 21.376 100706 2014-12-16 Second LE-16810 129.440

А в другой раз бывает нужно достать просто заказы с 1 по 3 по порядку, вне зависимости от их номеров в таблицемы. Тогда используют команду .iloc[] :

> show_these_orders = [1, 2, 3] > orders.iloc[show_these_orders] order_date ship_mode customer_id sales id 100090 2014-04-08 Standard JM-15655 21.376 100293 2014-04-08 Standard JM-15655 21.376 100328 2014-12-16 Second LE-16810 129.440

Можно фильтровать датафреймы по колонкам и столбцам одновременно:

> columns = ['customer_id', 'sales'] > rows = ['100363', '100363', '100706'] > orders.loc[rows][columns] customer_id sales id 100363 JM-15655 21.376 100363 JM-15655 21.376 100706 LE-16810 129.440 . 

Часто вы не знаете заранее номеров заказов, которые вам нужны. Например, если задача — получить заказы, стоимостью более 1000 рублей. Эту задачу удобно решать с помощью условных операторов.

Если — то. Условные операторы

Задача: нужно узнать, откуда приходят самые большие заказы. Начнем с того, что достанем все покупки стоимостью более 1000 долларов:

> filter_large = orders['sales'] > 1000 > orders.loc[filter_slarge] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 102673 2014-11-01 Standard KH-16630 1044.440 102988 2014-04-05 Second GM-14695 4251.920 103100 2014-12-20 First AB-10105 1107.660 103310 2014-05-10 Standard GM-14680 1769.784 . 

Помните, в начале статьи я упоминал, что в сериях все операции применяются по-элементно? Так вот, операция orders[‘sales’] > 1000 идет по каждому элементу серии и, если условие выполняется, возвращает True . Если не выполняется — False . Получившуюся серию мы сохраняем в переменную filter_large .

Вторая команда фильтрует строки датафрейма с помощью серии. Если элемент filter_large равен True , заказ отобразится, если False — нет. Результат — датафрейм с заказами, стоимостью более 1000 долларов.

Интересно, сколько дорогих заказов было доставлено первым классом? Добавим в фильтр ещё одно условие:

> filter_large = df['sales'] > 1000 > filter_first_class = orders['ship_mode'] == 'First' > orders.loc[filter_large & filter_first_class] order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Логика не изменилась. В переменную filter_large сохранили серию, удовлетворяющую условию orders[‘sales’] > 1000 . В filter_first_class — серию, удовлетворяющую orders[‘ship_mode’] == ‘First’ .

Затем объединили обе серии с помощью логического ‘И’: filter_first_class & filter_first_class . Получили новую серию той же длины, в элементах которой True только у заказов, стоимостью больше 1000, доставленных первым классом. Таких условий может быть сколько угодно.

Язык запросов

Еще один способ решить предыдущую задачу — использовать язык запросов. Все условия пишем одной строкой ‘sales > 1000 & ship_mode == ‘First’ и передаем ее в метод .query() . Запрос получается компактнее.

> orders.query('sales > 1000 & ship_mode == First') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Отдельный кайф: значения для фильтров можно сохранить в переменной, а в запросе сослаться на нее с помощью символа @: sales > @sales_filter .

> sales_filter = 1000 > ship_mode_filter = 'First' > orders.query('sales > @sales_filter & ship_mode > @ship_mode_filter') order_date ship_mode customer_id sales id 101931 2014-10-28 First TS-21370 1252.602 103100 2014-12-20 First AB-10105 1107.660 106726 2014-12-06 First RS-19765 1261.330 112158 2014-12-02 First DP-13165 1050.600 116666 2014-05-08 First KT-16480 1799.970 . 

Разобравшись, как получать куски данных из датафрейма, перейдем к тому, как считать агрегированные метрики: количество заказов, суммарную выручку, средний чек, конверсию.

Считаем производные метрики

Задача: посчитаем, сколько денег магазин заработал с помощью каждого класса доставки. Начнем с простого — просуммируем выручку со всех заказов. Для этого используем метод .sum() :

> orders['sales'].sum() 2297200.8603000003

Добавим класс доставки. Перед суммированием сгруппируем данные с помощью метода .groupby() :

> orders.groupby('ship_mode')['sales'].sum() ship_mode First 3.514284e+05 Same Day 1.283631e+05 Second 4.591936e+05 Standard 1.358216e+06

3.514284e+05 — научный формат вывода чисел. Означает 3.51 * 10 5 . Нам такая точность не нужна, поэтому можем сказать Pandas, чтобы округлял значения до сотых:

> pd.options.display.float_format = ''.format > orders.groupby('ship_mode')['sales'].sum() ship_mode First 351,428.4 Same Day 128,363.1 Second 459,193.6 Standard 1,358,215.7

Другое дело. Теперь видим сумму выручки по каждому классу доставки. По суммарной выручке неясно, становится лучше или хуже. Добавим разбивку по датам заказа:

> orders.groupby(['ship_mode', 'order_date'])['sales'].sum() ship_mode order_date First 2014-01-06 12.8 2014-01-11 9.9 2014-01-14 62.0 2014-01-15 149.9 2014-01-19 378.6 2014-01-26 152.6 . 

Видно, что выручка прыгает ото дня ко дню: иногда 10 долларов, а иногда 378. Интересно, это меняется количество заказов или средний чек? Добавим к выборке количество заказов. Для этого вместо .sum() используем метод .agg() , в который передадим список с названиями нужных функций.

> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum', 'count']) sum count ship_mode order_date First 2014-01-06 12.8 1 2014-01-11 9.9 1 2014-01-14 62.0 1 2014-01-15 149.9 1 2014-01-19 378.6 1 2014-01-26 152.6 1 . 

Ого, получается, что это так прыгает средний чек. Интересно, а какой был самый удачный день? Чтобы узнать, отсортируем получившийся датафрейм: выведем 10 самых денежных дней по выручке:

> orders.groupby(['ship_mode', 'order_date'])['sales'].agg(['sum']).sort_values(by='sum', ascending=False).head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6 

Команда разрослась, и её теперь неудобно читать. Чтобы упростить, можно разбить её на несколько строк. В конце каждой строки ставим обратный слеш \ :

> orders \ . .groupby(['ship_mode', 'order_date'])['sales'] \ . .agg(['sum']) \ . .sort_values(by='sum', ascending=False) \ . .head(10) sum ship_mode order_date Standard 2014-03-18 26,908.4 2016-10-02 18,398.2 First 2017-03-23 14,299.1 Standard 2014-09-08 14,060.4 First 2017-10-22 13,716.5 Standard 2016-12-17 12,185.1 2017-11-17 12,112.5 2015-09-17 11,467.6 2016-05-23 10,561.0 2014-09-23 10,478.6 

В самый удачный день — 18 марта 2014 года — магазин заработал 27 тысяч долларов с помощью стандартного класса доставки. Интересно, откуда были клиенты, сделавшие эти заказы? Чтобы узнать, надо объединить данные о заказах с данными о клиентах.

Объединяем несколько датафреймов

До сих пор мы смотрели только на таблицу с заказами. Но ведь у нас есть еще данные о клиентах интернет-магазина. Загрузим их в переменную customers и посмотрим, что они собой представляют:

> customers = pd.read_csv('customers.csv', index='id') > customers.head() name segment state city id CG-12520 Claire Gute Consumer Kentucky Henderson DV-13045 Darrin Van Huff Corporate California Los Angeles SO-20335 Sean O'Donnell Consumer Florida Fort Lauderdale BH-11710 Brosina Hoffman Consumer California Los Angeles AA-10480 Andrew Allen Consumer North Carolina Concord

Мы знаем тип клиента, место его проживания, его имя и имя контактного лица. У каждого клиента есть уникальный номер id . Этот же номер лежит в колонке customer_id таблицы orders . Значит мы можем найти, какие заказы сделал каждый клиент. Например, посмотрим, заказы пользователя CG-12520 :

> cust_filter = 'CG-12520' > orders.query('customer_id == @cust_filter') order_date ship_mode customer_id sales id CA-2016-152156 2016-11-08 Second CG-12520 993.90 CA-2017-164098 2017-01-26 First CG-12520 18.16 US-2015-123918 2015-10-15 Same Day CG-12520 136.72

Вернемся к задаче из предыдущего раздела: узнать, что за клиенты, которые сделали 18 марта заказы со стандартной доставкой. Для этого объединим таблицы с клиентами и заказами. Датафреймы объединяют с помощью методов .concat() , .merge() и .join() . Все они делают одно и то же, но отличаются синтаксисом — на практике достаточно уметь пользоваться одним из них.

Покажу на примере .merge() :

> new_df = pd.merge(orders, customers, how='inner', left_on='customer_id', right_index=True) > new_df.columns Index(['order_date', 'ship_mode', 'customer_id', 'sales', 'name', 'segment', 'state', 'city'], dtype='object')

В .merge() я сначала указал названия датафреймов, которые хочу объединить. Затем уточнил, как именно их объединить и какие колонки использовать в качестве ключа.

Ключ — это колонка, связывающая оба датафрейма. В нашем случае — номер клиента. В таблице с заказами он в колонке customer_id , а таблице с клиентами — в индексе. Поэтому в команде мы пишем: left_on=’customer_id’, right_index=True .

Решаем задачу

Закрепим полученный материал, решив задачу. Найдем 5 городов, принесших самую большую выручку в 2016 году.

Для начала отфильтруем заказы из 2016 года:

> orders_2016 = orders.query("order_date >= '2016-01-01' & order_date orders_2016.head() order_date ship_mode customer_id sales id 100041 2016-11-20 Standard BF-10975 328.5 100083 2016-11-24 Standard CD-11980 24.8 100153 2016-12-13 Standard KH-16630 63.9 100244 2016-09-20 Standard GM-14695 475.7 100300 2016-06-24 Second MJ-17740 4,823.1

Город — это атрибут пользователей, а не заказов. Добавим информацию о пользователях:

> with_customers_2016 = pd.merge(customers, orders_2016, how='inner', left_index=True, right_on='customer_id')

Cруппируем получившийся датафрейм по городам и посчитаем выручку:

> grouped_2016 = with_customers_2016.groupby('city')['sales'].sum() > grouped_2016.head() city Akron 1,763.0 Albuquerque 692.9 Amarillo 197.2 Arlington 5,672.1 Arlington Heights 14.1 Name: sales, dtype: float64

Отсортируем по убыванию продаж и оставим топ-5:

> top5 = grouped_2016.sort_values(ascending=False).head(5) > print(top5) city New York City 53,094.1 Philadelphia 39,895.5 Seattle 33,955.5 Los Angeles 33,611.1 San Francisco 27,990.0 Name: sales, dtype: float64

Возьмите данные о заказах и покупателях и посчитайте:

  1. Сколько заказов, отправлено первым классом за последние 5 лет?
  2. Сколько в базе клиентов из Калифорнии?
  3. Сколько заказов они сделали?
  4. Постройте сводную таблицу средних чеков по всем штатам за каждый год.

Через некоторое время выложу ответы в Телеграме. Подписывайтесь, чтобы не пропустить ответы и новые статьи.

Кстати, большое спасибо Александру Марфицину за то, что помог отредактировать статью.

Изучаем pandas. Урок 4. Работа с пропусками в данных

Follow us on Google Plus Follow us on rss

Очень часто большие объемы данных, которые подготавливаются для последующего анализа, имеют пропуски. Для того, чтобы можно было использовать алгоритмы машинного обучения, строящие модели по этим данным, в большинстве случаев, необходимо эти пропуски чем-то и как-то заполнить. На вопрос “чем заполнять?” мы не будем отвечать в рамках данного урока, а вот на вопрос “как заполнять?” ответим.

  1. pandas и отсутствующие данные
  2. Замена отсутствующих данных
  3. Удаление объектов/столбцов с отсутствующими данными

pandas и отсутствующие данные

Для начала, хочется сказать, что в документации по библиотеке pandas есть целый раздел, посвященный данной тематике.

Для наших экспериментов создадим структуру DataFrame , которая будет содержать пропуски. Для этого импортируем необходимые нам библиотеки.

In [1]: import pandas as pd In [2]: from io import StringIO

После этого создадим объект в формате csv . CSV – это один из наиболее простых и распространенных форматов хранения данных, в котором элементы отделяются друг от друга запятыми, более подробно о нем можете прочитать здесь.

In [3]: data = 'price,count,percent\n1,10,\n2,20,51\n3,30,' In [4]: df = pd.read_csv(StringIO(data)) 

Полученный объект df – это DataFrame с пропусками.

In [5]: df Out[5]: price count percent 0 1 10 NaN 1 2 20 51.0 2 3 30 NaN 

В нашем примере, у объектов с индексами 0 и 2 отсутствуют данные в поле percent . Отсутствующие данные помечаются как NaN . Добавим к существующей структуре еще один объект (запись), у которого будет отсутствовать значение в поле count.

In [6]: df.loc[3] = 'price':4, 'count':None, 'percent':26.3> In [7]: df Out[7]: price count percent 0 1.0 10.0 NaN 1 2.0 20.0 51.0 2 3.0 30.0 NaN 3 4.0 NaN 26.3 

Для начала обратимся к методам из библиотеки pandas , которые позволяют быстро определить наличие элементов NaN в структурах. Если таблица небольшая, то можно использовать библиотечный метод isnull . Выглядит это так.

In [8]: pd.isnull(df) Out[8]: price count percent 0 False False True 1 False False False 2 False False True 3 False True False 

Таким образом мы получаем таблицу того же размера, но на месте реальных данных в ней находятся логические переменные, которые принимают значение False , если значение поля у объекта есть, или True , если значение в данном поле – это NaN . В дополнение к этому можно посмотреть подробную информацию об объекте, для этого можно воспользоваться методом info() .

In [9]: df.info() class 'pandas.core.frame.DataFrame'> Int64Index: 4 entries, 0 to 3 Data columns (total 3 columns): price 4 non-null float64 count 3 non-null float64 percent 2 non-null float64 dtypes: float64(3) memory usage: 128.0 bytes 

В нашем примере видно, что объект df имеет три столбца ( count , percent и price ), при этом в столбце price все объекты значимы – не NaN , в столбце count – один NaN объект, в поле percent – два NaN объекта. Можно воспользоваться следующим подходом для получения количества NaN элементов в записях.

In [10]: df.isnull().sum() Out[10]: price 0 count 1 percent 2 dtype: int64

Замена отсутствующих данных

Отсутствующие данные объектов можно заменить на конкретные числовые значения, для этого можно использовать метод fillna() . Для экспериментов будем использовать структуру df , созданную в предыдущем разделе.

In [11]: df.isnull().sum() Out[11]: price 0 count 1 percent 2 dtype: int64 In [12]: df Out[12]: price count percent 0 1.0 10.0 NaN 1 2.0 20.0 51.0 2 3.0 30.0 NaN 3 4.0 NaN 26.3 In [13]: df.fillna(0) Out[13]: price count percent 0 1.0 10.0 0.0 1 2.0 20.0 51.0 2 3.0 30.0 0.0 3 4.0 0.0 26.3 

Этот метод не изменяет текущую структуру, он возвращает структуру DataFrame , созданную на базе существующей, с заменой NaN значений на те, что переданы в метод в качестве аргумента. Данные можно заполнить средним значением по столбцу.

In [14]: df.fillna(df.mean()) Out[14]: price count percent 0 1.0 10.0 38.65 1 2.0 20.0 51.00 2 3.0 30.0 38.65 3 4.0 20.0 26.30 

В зависимости от задачи используется тот или иной метод заполнения отсутствующих элементов, это может быть нулевое значение, математическое ожидание, медиана и т.п. Для замены NaN элементов на конкретные значения, можно использовать интерполяцию, которая реализована в методе interpolate(), алгоритм интерполяции задается через аргументы метода.

Удаление объектов/столбцов с отсутствующими данными

Довольно часто используемый подход при работе с отсутствующими данными – это удаление записей (строк) или полей (столбцов), в которых встречаются пропуски. Для того, чтобы удалить все объекты, которые содержат значения NaN воспользуйтесь методом dropna() без аргументов.

In [15]: df.dropna() Out[15]: price count percent 1 2.0 20.0 51.0 

Вместо записей, можно удалить поля, для этого нужно вызвать метод dropna с аргументом axis=1 .

In [16]: df.dropna() Out[16]: price count percent 1 2.0 20.0 51.0 In [17]: df.dropna(axis=1) Out[17]: price 0 1.0 1 2.0 2 3.0 3 4.0 

pandas позволяет задать порог на количество не- NaN элементов. В приведенном ниже примере будут удалены все столбцы, в которых количество не- NaN элементов меньше трех.

In [18]: df.dropna(axis = 1, thresh=3) Out[18]: price count 0 1.0 10.0 1 2.0 20.0 2 3.0 30.0 3 4.0 NaN 

P.S.

Раздел: Pandas Python Машинное обучение и анализ данных Метки: Pandas, Python, Машинное обучение

Изучаем pandas. Урок 4. Работа с пропусками в данных : 4 комментария

  1. Карл 11.04.2018 Полезная статья, решила одну из моих проблем с кодом) Интересно будет узнать, ЧЕМ заполнять пропуски?
  1. writer 14.04.2018 В начале написал комментарий, частично повторив содержимое статьи))) Чем заполнять, определяется задачей, т.е. если можно заполнить средним значением, то заполняйте средним, если данные чувствительны к таким махинациям, то можно просто их выбросить.

10 приемов Python Pandas, которые сделают вашу работу более эффективной

Pandas — это широко используемый пакет Python для структурированных данных. Существует много хороших учебных пособий на данную тематику, но здесь мы бы хотели раскрыть несколько интересных приемов, которые, вероятно, еще пока неизвестны читателю, но могут оказаться крайне полезными.

read_csv

Все знают эту команду. Но если данные, которые вы пытаетесь прочитать, слишком большие, попробуйте добавить команду nrows = 5 , чтобы прочитать сначала небольшую часть данных перед загрузкой всей таблицы. В этом случае вам удастся избежать ситуации выбора неверного разделителя (не всегда в данных есть разделение в виде запятой).

(Или вы можете использовать команду ‘head’ в linux для проверки первых 5 строк в любом текстовом файле: head -c 5 data.txt )

Затем вы можете извлечь список столбцов, используя df.columns.tolist() , а затем добавить команду usecols = [‘c1’, ‘c2’,…], чтобы извлечь только нужные вам столбцы. Кроме того, если вы знаете типы данных определенных столбцов, вы можете добавить dtype = для более быстрой загрузки. Еще одно преимущество этой команды в том, что если у вас есть столбец, который содержит как строки, так и числа, рекомендуется объявить его тип строковым, чтобы не возникало ошибок при попытке объединить таблицы, используя этот столбец в качестве ключа.

select_dtypes

Если предварительная обработка данных должна выполняться в Python, то эта команда сэкономит ваше время. После чтения из таблицы типами данных по умолчанию для каждого столбца могут быть bool, int64, float64, object, category, timedelta64 или datetime64. Вы можете сначала проверить распределение с помощью

df.dtypes.value_counts()

чтобы узнать все возможные типы данных вашего фрейма, затем используйте

df.select_dtypes(include=[‘float64’, ‘int64’])

чтобы выбрать субфрейм только с числовыми характеристиками.

сopy

Это важная команда. Если вы сделаете:

import pandas as pd
df1 = pd.DataFrame(< ‘a’:[0,0,0], ‘b’: [1,1,1]>)
df2 = df1
df2[‘a’] = df2[‘a’] + 1
df1.head()

Вы обнаружите, что df1 изменен. Это потому, что df2 = df1 не делает копию df1 и присваивает ее df2, а устанавливает указатель, указывающий на df1. Таким образом, любые изменения в df2 приведут к изменениям в df1. Чтобы это исправить, вы можете сделать либо:

df2 = df1.copy ()
from copy import deepcopy
df2 = deepcopy(df1)

map

Это классная команда для простого преобразования данных. Сначала вы определяете словарь, в котором «ключами» являются старые значения, а «значениями» являются новые значения.

level_map = 
df[‘c_level’] = df[‘c’].map(level_map)

Например: True, False до 1, 0 (для моделирования); определение уровней; определяемые пользователем лексические кодировки.

apply or not apply?

Если нужно создать новый столбец с несколькими другими столбцами в качестве входных данных, функция apply была бы весьма полезна.

def rule(x, y): 
if x == ‘high’ and y > 10:
return 1
else:
return 0

df = pd.DataFrame(< 'c1':[ 'high' ,'high', 'low', 'low'], 'c2': [0, 23, 17, 4]>)
df['new'] = df.apply(lambda x: rule(x['c1'], x['c2']), axis = 1)
df.head()

В приведенных выше кодах мы определяем функцию с двумя входными переменными и используем функцию apply, чтобы применить ее к столбцам ‘c1’ и ‘c2’.

но проблема «apply» заключается в том, что иногда она занимает очень много времени.

Скажем, если вы хотите рассчитать максимум из двух столбцов «c1» и «c2», конечно, вы можете применить данную команду

df[‘maximum’] = df.apply(lambda x: max(x[‘c1’], x[‘c2’]), axis = 1)

но это будет медленнее, нежели:

df[‘maximum’] = df[[‘c1’,’c2']].max(axis =1)

Вывод: не используйте команду apply, если вы можете выполнить ту же работу используя другие функции (они часто быстрее). Например, если вы хотите округлить столбец ‘c’ до целых чисел, выполните округление (df [‘c’], 0) вместо использования функции apply.

value counts

Это команда для проверки распределения значений. Например, если вы хотите проверить возможные значения и частоту для каждого отдельного значения в столбце «c», вы можете применить

df[‘c’].value_counts()

Есть несколько полезных приемов / функций:
A. normalize = True : если вы хотите проверить частоту вместо подсчетов.
B. dropna = False : если вы хотите включить пропущенные значения в статистику.
C. sort = False : показать статистику, отсортированную по значениям, а не по количеству.

D. df[‘c].value_counts().reset_index().: если вы хотите преобразовать таблицу статистики в датафрейм Pandas и управлять ими.

количество пропущенных значений

При построении моделей может потребоваться исключить строку со слишком большим количеством пропущенных значений / строки со всеми пропущенными значениями. Вы можете использовать .isnull () и .sum () для подсчета количества пропущенных значений в указанных столбцах.

import pandas as pd
import numpy as np

df = pd.DataFrame(< ‘id’: [1,2,3], ‘c1’:[0,0,np.nan], ‘c2’: [np.nan,1,1]>)
df = df[[‘id’, ‘c1’, ‘c2’]]
df[‘num_nulls’] = df[[‘c1’, ‘c2’]].isnull().sum(axis=1)
df.head()

выбрать строки с конкретными идентификаторами

В SQL мы можем сделать это, используя SELECT * FROM… WHERE ID в («A001», «C022»,…), чтобы получить записи с конкретными идентификаторами. Если вы хотите сделать то же самое с pandas, вы можете использовать:

df_filter = df ['ID']. isin (['A001', 'C022', . ]) 
df [df_filter]

Percentile groups

Допустим, у вас есть столбец с числовыми значениями, и вы хотите классифицировать значения в этом столбце по группам, скажем, топ 5% в группу 1, 5–20% в группу 2, 20–50% в группу 3, нижние 50% в группу 4. Конечно, вы можете сделать это с помощью pandas.cut, но мы бы хотели представить другую функцию:

import numpy as np
cut_points = [np.percentile(df[‘c’], i) for i in [50, 80, 95]]
df[‘group’] = 1
for i in range(3):
df[‘group’] = df[‘group’] + (df[‘c’] < cut_points[i])
# or Которая быстро запускается (не применяется функция apply).

to_csv

Опять-таки, это команда, которую используют все. Отметим пару полезных приемов. Первый:
print(df[:5].to_csv())

Вы можете использовать эту команду, чтобы напечатать первые пять строк того, что будет записано непосредственно в файл.

Еще один прием касается смешанных вместе целых чисел и пропущенных значений. Если столбец содержит как пропущенные значения, так и целые числа, тип данных по-прежнему будет float, а не int. Когда вы экспортируете таблицу, вы можете добавить float_format = '%. 0f', чтобы округлить все числа типа float до целых чисел. Используйте этот прием, если вам нужны только целочисленные выходные данные для всех столбцов – так вы избавитесь от всех назойливых нулей ‘.0’ .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *