Как найти производную?
Примеры решений
Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.
Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.
Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.
Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.
Собственно, сразу рассмотрим пример:
Найти производную функции
Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .
Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называется дифференцированием.
Обозначения: Производную обозначают или .
ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) – ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!
Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:
производную константы:
, где – постоянное число;
производную степенной функции:
, в частности: , , .
Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.
В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.
В этой связи переходим к рассмотрению правил дифференцирования:
1) Постоянное число можно (и нужно) вынести за знак производной
, где – постоянное число (константа)
Найти производную функции
Смотрим в таблицу производных. Производная косинуса там есть, но у нас .
Самое время использовать правило, выносим постоянный множитель за знак производной:
А теперь превращаем наш косинус по таблице:
Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:
2) Производная суммы равна сумме производных
Найти производную функции
Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:
Применяем второе правило:
Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.
Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:
Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).
Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:
Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:
Все степени вида желательно снова представить в виде корней, степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.
Найти производную функции
Попробуйте решить данный пример самостоятельно (ответ в конце урока). Желающие также могут воспользоваться интенсивным курсом в pdf-формате, который особенно актуален, если у вас в распоряжении совсем мало времени.
3) Производная произведения функций
Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:
Это необычное правило (как, собственно, и другие) следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:
Найти производную функции
Здесь у нас произведение двух функций, зависящих от .
Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:
Сложно? Вовсе нет, вполне доступно даже для чайника.
Найти производную функции
В данной функции содержится сумма и произведение двух функций – квадратного трехчлена и логарифма . Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.
Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:
Теперь для скобки используем два первых правила:
В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:
При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что .
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока)
4) Производная частного функций
В потолке открылся люк, не пугайся, это глюк.
А вот это вот суровая действительность:
Найти производную функции
Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:
Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:
Заодно избавляемся от скобок в числителе, которые теперь не нужны.
Вообще говоря, постоянные множители при нахождении производной можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.
Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:
Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:
Штрихов больше нет, задание выполнено.
На практике обычно (но не всегда) ответ упрощают «школьными» методами:
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока).
Время от времени встречаются хитрые задачки:
Найти производную функции
Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.
В данном случае можно почленно поделить числитель на знаменатель.
Преобразуем функцию:
Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:
Найти производную функции
Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:
Произведение все-таки дифференцировать проще:
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока).
5) Производная сложной функции
Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.
Пример 4: . В ходе решения данного примера следует обратить внимание, на тот факт, что и – постоянные числа, не важно чему они равны, важно, что это — константы. Поэтому выносится за знак производной, а .
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам,
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено
Вычисление производных с помощью шаблонов на С++
Навеяно постом. Попутно получилось что-то похожее на собственную реализацию лямбда-выражений 🙂 С возможностью вычисления производной еще на этапе компиляции. Для задания функции можно использовать операторы +, -, *, /, а также ряд стандартных математических функций.
Sqr — возведение в квадрат
Sqrt — квадратный корень
Pow — возведение в действительную степень
Exp — показательная функция
Log — логарифм
Sin, Cos, Tg, Ctg, Asin, Acos, Atg, Actg — тригонометрия
Производная вычисляется с помощью функции derivative. На входе у нее — функтор, на выходе — тоже. Для того, чтобы производная была вычислена точно, на вход должен подаваться функтор, заданный с помощью особого синтаксиса. Синтаксис — интуитивно понятный (по крайней мере, я на это надеюсь). Если на вход derivative подать любой другой функтор или лямбду с подходящей сигнатурой (double -> double), то производная будет вычислена приближенно.
Пример:
#include #include "CrazyMath.h" using namespace std; using namespace CrazyMath; auto global = Tg(X) + Ctg(X) + Asin(X) * Acos(X) - Atg(X) / Actg(X); auto d_global = derivative(global); int main() < auto f1 = (Pow(X, 3) + 2 * Sqr(X) - 4 * X + 1 / Sqrt(1 - Sqr(X))) * (Sin(X) + Cos(X) * (Log(5, X) - Exp(2, X))); auto f2 = derivative(f1) * Sqrt(X - Tg(X / 4)); auto f3 = [](double x) ->double < return sin(x); >; auto df1 = derivative(f1); auto df2 = derivative(f2); auto df3 = derivative(f3); cout
Работает это так:
// CrazyMath.h, отрывок //--------------------------------------------------- // base functions class Const < public: typedef Const Type; Const(double x) : m_const(x) <>double operator()(double) <> private: double m_const; >; class Simple < public: typedef Simple Type; double operator()(double x) < return x; >>; template class Add < public: typedef typename AddType; Add(const F1& f1, const F2& f2) : m_f1(f1), m_f2(f2) <> double operator()(double x) < return m_f1(x) + m_f2(x); >F1 m_f1; F2 m_f2; >; //--------------------------------------------------- // helpers template Add operator+(const F1& f1, const F2& f2) < return Add(f1, f2); > template Add operator+(double value, const F& f) < return Add(f, Const(value)); > template Add operator+(const F& f, double value) < return Add(f, Const(value)); > // other helpers . //--------------------------------------------------- // derivatives template class Derivative < public: Derivative(const F& f, double dx = 1e-3) : m_f(f), m_dx(dx) <>double operator()(double x) < return (m_f(x + m_dx) - m_f(x)) / m_dx; >F m_f; double m_dx; typedef std::function Type; Type expression() < return [this](double x) ->double < return (m_f(x + m_dx) - m_f(x)) / m_dx; >; > >; template<> class Derivative < public: typedef Const Type; Derivative(Const) <> double operator()(double) < return 0; >Type expression() < return Const(0); >>; template<> class Derivative < public: typedef Const Type; Derivative(Simple) <> double operator()(double) < return 1; >Type expression() < return Const(1); >>; template class Derivative < Add> < public: Derivative< Add> (const Add& f) : m_df1(f.m_f1), m_df2(f.m_f2) < >double operator()(double x) < return m_df1(x) + m_df2(x); >Derivative m_df1; Derivative m_df2; typedef typename Add Type; Type expression() < return m_df1.expression() + m_df2.expression(); >>; // other derivatives . template typename Derivative::Type derivative(F f) < return Derivative(f).expression(); > extern Simple X;
Файл CrazyMath.h получился достаточно большим, поэтому полностью включать его в статью смысла нет. Те, кому интересно, могут скачать исходники с Github’а
UPD Добавил в класс Derivative метод expression и typedef соответствующий типу, который возвращает метод expression. Метод expression возвращает функтор, пригодный для дальнейшего дифференцирования. Однако при вычислении производных 2-го, 3-го и более высоких порядков размер выражения быстро растет, поэтому компиляция может затянуться.
Простейшие типовые задачи с производной. Примеры решений
После изучения азов нахождения производной в статьях Как найти производную? Примеры решений и Производная сложной функции мы рассмотрим типовые задачи, связанные с нахождением производной. Желающие улучшить свои навыки дифференцирования также могут ознакомиться с уроком Сложные производные. Логарифмическая производная.
Помимо нового материала у вас есть возможность дополнительно «набить руку» на нахождении производных. Действительно, если речь пойдет о типовых задачах на производную, то, как минимум, во всех примерах нужно будет найти эту самую производную. Я постараюсь рассмотреть приёмы решения и хитрости, которые не встречались в других статьях.
Вот наше аппетитное меню:
- Производная функции в точке
- Уравнение касательной к графику функции в точке
- Дифференциал функции одной переменной
- Вторая производная
Повар на раздаче.
Производная функции в точке
Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:
1) Необходимо найти производную.
2) Необходимо вычислить значение производной в заданной точке.
Вычислить производную функции в точке
Справка: Следующие способы обозначения функции эквивалентны:
В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».
Сначала находим производную:
Надеюсь, многие уже приноровились находить такие производные устно.
На втором шаге вычислим значение производной в точке :
Небольшой разминочный пример для самостоятельного решения:
Вычислить производную функции в точке
Полное решение и ответ в конце урока.
Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.
Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.
Вычислить производную функции в точке .
Сначала найдем производную:
Производная, в принципе, найдена, и можно подставлять требуемое значение . Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:
Ну вот, совсем другое дело. Вычислим значение производной в точке :
В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому что арктангенсов на студенческий век ещё хватит.
Вычислить производную функции в точке .
Это пример для самостоятельного решения.
Уравнение касательной к графику функции
Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной к графику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.
Рассмотрим «демонстрационный» простейший пример.
Составить уравнение касательной к графику функции в точке с абсциссой . Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):
Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственной точке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.
Применительно к нашему случаю: при касательная (стандартное обозначение) касается графика функции в единственной точке .
И наша задача состоит в том, чтобы найти уравнение прямой .
Как составить уравнение касательной в точке с абсциссой ?
Общая формула знакома нам еще со школы:
Значение нам уже дано в условии.
Теперь нужно вычислить, чему равна сама функция в точке :
На следующем этапе находим производную:
Находим производную в точке (задание, которое мы недавно рассмотрели):
Подставляем значения , и в формулу :
Таким образом, уравнение касательной:
Это «школьный» вид уравнения прямой с угловым коэффициентом. В высшей математике уравнение прямой на плоскости принято записывать в так называемой общей форме , поэтому перепишем найденное уравнение касательной в соответствии с традицией:
Очевидно, что точка должна удовлетворять данному уравнению:
Следует отметить, что такая проверка является лишь частичной. Если мы неправильно вычислили производную в точке , то выполненная подстановка нам ничем не поможет.
Рассмотрим еще два примера.
Составить уравнение касательной к графику функции в точке с абсциссой
Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :
2) Найдем производную. Дважды используем правило дифференцирования сложной функции:
3) Вычислим значение производной в точке :
4) Подставим значения , и в формулу :
Выполним частичную проверку:
Подставим точку в найденное уравнение:
Составить уравнение касательной к графику функции в точке с абсциссой
Полное решение и образец оформления в конце урока.
В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду. И, конечно же, ознакомьтесь со строгим определением касательной, после чего закрепите материал на уроке Уравнение нормали, где есть дополнительные примеры с касательной.
Дифференциал функции одной переменной
С формально-технической точки зрения найти дифференциал функции – это «почти то же самое, что найти производную».
Производная функции чаще всего обозначается через .
Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек»)
Дифференциал функции одной переменной записывается в следующем виде:
Другой вариант записи:
Простейшая задача: Найти дифференциал функции
1) Первый этап. Найдем производную:
2) Второй этап. Запишем дифференциал:
Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений.
Помимо «комбинированных» задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции:
Найти дифференциал функции
Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:
(корень пятой степени относится именно к синусу).
Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:
Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции два раза:
Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде:
Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).
Найти дифференциал функции
Это пример для самостоятельного решения.
Следующие два примера на нахождение дифференциала в точке:
Вычислить дифференциал функции в точке
Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:
Труды были не напрасны, записываем дифференциал:
Теперь вычислим дифференциал в точке :
В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.
Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на . Окончательно:
Вычислить дифференциал функции в точке . В ходе решения производную максимально упростить.
Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.
Вторая производная
Всё очень просто. Вторая производная – это производная от первой производной:
Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.
Рассмотрим простейший пример. Найдем вторую производную от функции .
Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:
Теперь находим вторую производную:
Рассмотрим более содержательные примеры.
Найти вторую производную функции
Найдем первую производную:
На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :
Находим вторую производную:
Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :
Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.
Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.
Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.
Например: Вычислим значение найденной второй производной в точке :
Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.
Найти вторую производную функции . Найти
Это пример для самостоятельного решения.
Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются чуть реже.
Решения и ответы:
Пример 2: Найдем производную:
Вычислим значение функции в точке :
Пример 4: Найдем производную:
Вычислим производную в заданной точке:
Пример 6: Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :
2) Найдем производную. Перед дифференцированием функцию выгодно упростить:
3) Вычислим значение производной в точке :
4) Подставим значения , и в формулу :
Пример 8: Преобразуем функцию:
Найдем производную:
Запишем дифференциал:
Пример 10: Найдем производную:
Запишем дифференциал:
Вычислим дифференциал в точке :
Пример 12: Найдем первую производную:
Найдем вторую производную:
Вычислим:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам,
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
© Copyright mathprofi.ru, Александр Емелин, 2010-2023. Копирование материалов сайта запрещено
Таблица производных функций
Самый частый вопрос, который возникает у старшеклассников на уроках алгебры, звучит примерно так: «А нам это в жизни пригодится?». Отвечаем: пригодится! Математика тесно связана с физикой, которая описывает окружающий нас мир. И формулы из таблицы производных основных элементарных функций тоже имеют практический смысл.
· Обновлено 28 октября 2022
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1, а также по правилам вычисления производных (c*f(x))’=cf'(x) и (f(x)+g(x))’=f'(x)+g'(x).
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Быстрее освоить производные поможет обучение на курсах по математике в онлайн-школе Skysmart.
Лучшие университеты для поступления в 2024 году
Перечень вузов России с рекомендациями, как пройти на бюджет
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Поэтому приведем стандартную таблицу производных.
Функция f (x)
Производная f’ (х)
С (т. е. константа, любое число)