Что такое вычислительно неустойчивый метод
Перейти к содержимому

Что такое вычислительно неустойчивый метод

  • автор:

Устойчивость и неустойчивость алгоритмов

Информатика, информационные технологии

Поскольку в системе чисел с плавающей точкой нарушаются основные законы арифметики, то при реализации алгоритмов на ЭВМ большую роль играет порядок организации вычислений, а именно: результат вычислений может сильно зависеть от порядка.

Алгоритм, в котором погрешность, допущенная в начальных данных или допускаемая при вычислениях, с каждым шагом не увеличивается или увеличивается незначительно, называется устойчивым. В противном случае, если погрешность существенно увеличивается от шага к шагу, алгоритм называется неустойчивым.

Чаще всего неустойчивость алгоритма связана с итерационными процессами, когда результат получается посредством последовательности итераций, причем на каждой итерации в качестве исходных данных используются значения, полученные на предыдущей итерации. Существуют неустойчивые алгоритмы, не связанные с итерационными процессами.

Пример. Известно, что ряд Тейлора для функции

сходится для всех . Рассмотрим один из возможных алгоритмов суммирования этого ряда:

то вычисления закончены, результат —

переход на шаг 2.

Проверка на шаге 3 учитывает то обстоятельство, что машинная арифметика является приближенной. Выражение будет иметь то же значение, что и , если число достаточно мало. Если провести вычисления по этому алгоритму для различных значений , получим числа, представленные в табл.1. Для эти числа соответствуют истинным значениям, но для картина неудовлетворительная: в некоторых случаях неверны даже знаки результатов. Это говорит о неустойчивости рассмотренного алгоритма.

-1-5-10-15-20 2.718282148.413222026.473269017.4.8516531*1080.36787946.7377836*10-3-1.6408609*10-4-2.2377001*10-21.202966 2.718282148.413222026.463269017.4.8516520*1080.36787956.7379470*10-34.5399930*10-53.0590232*10-72.0611537*10-9

Пример. Необходимо вычислить

При вычислении интеграла по частям получим:

Предположим, что вычисления проводятся в системе чисел с плавающей точкой, для которой :

Поскольку для любого при : , то истинное значение . Что привело к ошибке? Единственная ошибка округления, сделанная в приведенных выше вычислениях, — это ошибка в , когда округляется до шести значащих цифр. Последующие значения получены округлением результатов, вычисленных точно по содержащему ошибку округления значению . Формула (10) точна для действительной арифметики, следовательно явная ошибка в всецело обязана ошибке округления в . Ошибка в — ,

т.е. ошибка в ? . Аналогично, ошибка в ? и т.д. Ошибка в ? . Истинное значение . Таким образом, возникающая вследствие неустойчивости алгоритма ошибка – абсолютная погрешность – при вычислении значительно больше искомого значения , что не даст возможности получить ни одного верного знака в записи числа , что и наблюдается при вычислении по абсолютно точной с точки зрения обычной арифметики формуле (10).

Преобразуем формулу (10) эквивалентным образом:

Теперь на каждом шаге вычислений ошибка в умножается на множитель . Таким образом, если начать вычисления с некоторого для и проводить вычисления в обратном порядке, то любая начальная ошибка или промежуточные ошибки округлений будут уменьшаться на каждом шаге, что говорит об устойчивости алгоритма, отвечающего (20).

Оценим значения в общем виде. Поскольку при : , то на сегменте : , а значит:

а это значит, что .

Таким образом, если в качестве стартового значения для вычислений в соответствии с формулой (20) взять, например, , значение которого положить равным нулю

то начальная ошибка, допущенная при этом в (30), не превосходит в соответствии с (25) . Эта ошибка умножится на при вычислении , так что ошибка в — .

Вычисления, проведенные по ормуле (20), приведут к следующему результату:

что говорит об устойчивости алгоритма (20).

Очевидно, что при решении произвольной реальной задачи в общем случае невозможно получить точное значение искомого численного результата. Существование неустранимой погрешности в математической модели объекта или процесса, фигурирующего в задаче, погрешности входных данных, многие из которых в реальных условиях получены экспериментально, погрешность метода, используемого для решения, и вычислительная, погрешности, возникающие при каких-либо дополнительных воздействиях на объект, которые часто трактуются как возмущения входных данных, приводят к необходимости их совокупного учета при оценке погрешности результата. Даже в случае, когда входные данные математической модели не имеют погрешностей, а метод, выбранный для решения полученной математической задачи является точным, избежать вычислительной погрешности при проведении вычислений в системе чисел с плавающей точкой, а значит и погрешности в полученном результате, невозможно. После построения математической модели реального процесса, которая необходимо удовлетворяет требованию адекватности (решение математической задачи, полученное с ее помощью, незначительно отличается от истинного решения реальной задачи), исходная задача и ее математическая формализация в процессе решения и анализа полученного результата, как правило, не разделяются. Однако, в силу особенностей машинной арифметики, невозможно в общем случае получить точное решение даже смоделированной математической задачи (пренебрегая неустранимой погрешностью и погрешностью метода).

Полученное приближенное (в силу перечисленных выше причин) решение некоторой вычислительной задачи может рассматриваться как точное решение, но другой, возмущенной задачи ( отличается от возмущением входных данных). В этом случае для определения качества полученного приближения необходимо иметь возможность оценить степень зависимости решения от возмущений исходных данных.

Некоторые вычислительные задачи очень сильно «реагируют» на даже малые изменения данных, причем это не зависит от системы с плавающей точкой или выбранного алгоритма, а является свойством самой задачи.

Пример. Рассмотрим квадратное уравнение, корни которого являются «почти» кратными:

Корни уравнения: . Изменение правой части уравнения лишь на вызовет изменение в корнях , т.е. на три порядка большее, чем начальное. Рассмотренная задача является чувствительной.

Назовем задачу чувствительной к погрешностям исходных данных, если даже малые погрешности исходных данных могут привести к значительной погрешности результата, и нечувствительной в противном случае.

Для чувствительных задач «правильные» ответы (ответы с очень малой погрешностью) принципиально нельзя получить никаким алгоритмом, поскольку даже малые ошибки, допущенные при представлении данных и при вычислениях (а эти ошибки сопровождают вычислительный процесс всегда) приведут к значительным погрешностям в результатах. В силу этого чрезвычайно важной и актуальной является численная оценка такой чувствительности, установления параметров, определяющих чувствительность, достаточных условий нечувствительности задачи.

Пусть ? входные данные для некоторой задачи, результатом решения которой является ; ? возмущенные входные данные, а решение задачи, полученное для этих входных данных, ? . Числом обусловленности задачи называется величина, определяемая соотношением:

Очевидно, чем меньше число обусловленности, тем меньше возмущение результата зависит от возмущения входных данных, тем меньше чувствительность задачи, а при малом числе обусловленности задача окажется нечувствительной к погрешностям исходных данных. Таким образом, число обусловленности задачи является ее мерой чувствительности к возмущающим воздействиям.

Пример. Решить систему уравнений:

Предположим, что вычисления проводятся в системе с плавающей точкой, для которой . Решая систему методом Гаусса, получим:

При подстановке решения в исходную систему получим:

И хотя подстановка показала «хороший результат», точное решение системы, на самом деле, равно:

Вычисленное решение очень отличается от точного, хотя ведет себя примерно также, как точное. Рассмотренная задача является чувствительной (или плохо обусловленной, или некорректно поставленной).

Статьи к прочтению:
  • Устройства для вывода прочей информации
  • Устройства передачи информации.

Нарушение равновесия, неустойчивость.

Похожие статьи:
  • Алгоритм. понятие, свойства, виды записи. Операционная система. Файловая система. Понятие, функции. Операционная система – это базовый комплекс управляющих и обрабатывающих программ,…
  • Структурированные данные и алгоритмы их обработки Для повышения производительности и качества работы необходимо иметь данные, максимально приближенные к реальным аналогам. Тип данных, позволяющий хранить…

Вычислительная устойчивость

У этого термина существуют и другие значения, см. устойчивость.

Определение [ править ]

В вычислительной математике большое значение имеет чувствительность решения задачи тем или иным алгоритмом к малым изменениям входных данных. Задача или алгоритм решения задачи называются вычислительно неустойчивыми, если малые изменения входных данных приводят к заметным изменениям решения. Поскольку вычисления в рациональных числах осуществляются с некоторой погрешностью, вычислительная неустойчивость приводит к невозможности решения ряда задач некоторыми алгоритмами, которые при абсолютно точных вычислениях давали бы решения. Устойчивость алгоритма к множеству решаемых задач отдалённо напоминает непрерывное отображение.

Вычислительную устойчивость, например, решения системы уравнений, можно определить следующим образом: допустим мы решили систему уравнения относительно x_1. x_n, то есть нашли решение P(x_1. x_n). Если мы незначительно изменим значения на x_1'. x_n', то новое решение P'(x_1'. x_n')должно быть в некоторой метрике близким к решению P(x_1. x_n).

Пример 1: система уравнений [ править ]

\left\<\begin</p>
<p>Дана система двух линейных уравнений: u + 10v = 11 \\ 100u + 1001v = 1101 \end\right.\,\!» /></p>
<p><img decoding=

«Возмутим» правую часть первого уравнения на 0,01 (вместо 11 напишем 11,01) и получим новую, «возмущённую» систему, решением которой является пара чисел , не имеющая ничего общего с решением невозмущённой системы. Здесь изменение значения одного параметра меньше чем на привело к совсем другому решению.

См. также [ править ]

  • Плавающая запятая
  • Фиксированная запятая
  • Число обусловленности

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.

Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её.
  • Незавершённые статьи по математике
  • Численные методы

Вычислительная устойчивость

  • В вычислительной математике вычислительная устойчивость является обычно желательным свойством численных алгоритмов.

Точное определение устойчивости зависит от контекста.

Один из них — численная линейная алгебра,

другой — алгоритмы решения обыкновенных уравнений и дифференциальных уравнений в частных производных с помощью дискретного приближения.

В численной линейной алгебре основной проблемой являются нестабильности, вызванные близостью к различным особенностям(singularity),

таким как очень малые или почти совпадающие собственные значения.

С другой стороны, в численных алгоритмах для дифференциальных уравнений

проблема заключается в увеличении ошибок округления и/или изначально небольших флуктуаций в исходных данных,

которые могут привести к значительному отклонению окончательного ответа от точного решения.

Некоторые численные алгоритмы могут ослаблять небольшие отклонения (ошибки) во входных данных; другие могут увеличить такие ошибки.

Расчеты, которые, как можно доказать, не увеличивают ошибки аппроксимации, называются вычислительно устойчивыми.

Одна из распространенных задач численного анализа — попытаться выбрать надежные алгоритмы,

то есть не дать сильно отличающийся результат при очень небольшом изменении входных данных.

Противоположным явлением является неустойчивость.

Как правило, алгоритм включает в себя приближенный метод, и в некоторых случаях можно доказать,

что алгоритм будет приближаться к правильному решению в некотором пределе

(при использовании на самом деле действительных чисел, а не чисел с плавающей запятой).

Даже в этом случае нет гарантии, что он будет сходиться к правильному решению,

потому что ошибки округления или усечения с плавающей точкой могут расти, а не уменьшаться,

Связанные понятия

Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.

Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.

Метод итерации — численный метод решения математических задач, приближённый метод решения системы линейных алгебраических уравнений. Суть такого метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным).

Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а.

Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.

Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.

Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.

Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.

Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.

Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.

Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.

Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.

Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций.

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.

Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.

Линеаризация (от лат. linearis — линейный) — один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы линеаризации имеют ограниченный характер, т. е. эквивалентность исходной нелинейной системы и её линейного приближения сохраняется лишь для ограниченных пространственных или временных масштабов системы, либо для определенных процессов, причём, если система.

Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.

Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.

Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации.

В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.

Предги́льбертово простра́нство — линейное пространство с определённым на нём скалярным произведением.

Условное математическое ожидание в теории вероятностей — это среднее значение случайной величины относительно условного распределения.

В теории чисел гладким числом называется целое число, все простые делители которого малы.

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован.

Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение.

Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы.

Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.

В линейной алгебре положи́тельно определённая ма́трица — это эрмитова матрица, которая во многом аналогична положительному вещественному числу. Это понятие тесно связано с положительно определённой симметрической билинейной формой (или полуторалинейной формой в случае с комплексными числами).

Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.

Производя́щая фу́нкция моме́нтов — способ задания вероятностных распределений. Используется чаще всего для вычисления моментов.

Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).

Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).

Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.

Характеристика (кольца или поля) — числовая величина, используемая в общей алгебре для описания некоторых свойств этих.

Аппроксима́ция (от лат. proxima — ближайшая) или приближе́ние — научный метод, состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.

Градиентные методы — численные методы решения с помощью градиента задач, сводящихся к нахождению экстремумов функции.

Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.

Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу , характеризующееся тем, что плотность вероятности на этом интервале постоянна.

Дискретное преобразование Фурье (в англоязычной литературе DFT, Discrete Fourier Transform) — это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов (его модификации применяются в сжатии звука в MP3, сжатии изображений в JPEG и др.), а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Дискретное преобразование Фурье требует в качестве входа дискретную функцию. Такие функции часто создаются путём дискретизации.

В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.

Корректно поставленная задача в математике — прикладная задача, математическое решение которой существует, единственно и устойчиво. Происходит от определения, данного Жаком Адамаром, согласно которому математические модели физических явлений должны иметь следующие свойства.

Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.

Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.

Градиентный спуск — метод нахождения локального экстремума (минимума или максимума) функции с помощью движения вдоль градиента. Для минимизации функции в направлении градиента используются методы одномерной оптимизации, например, метод золотого сечения. Также можно искать не наилучшую точку в направлении градиента, а какую-либо лучше текущей.

Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма — однородным многочленом любой степени от двух переменных.

Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.

Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.

Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.

Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.

Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Вычислительная устойчивость

В вычислительной математике большое значение имеет чувствительность решения к малым изменениям входных данных. Задача называется вычислительно неустойчивой, если малые изменения входных данных приводят к заметным изменениям решения. Это отдалённо напоминает непрерывное отображение.

Вычислительная устойчивость, например, решения системы уравнений, можно определить следующим образом: допустим мы решили систему уравнения относительно x_1. x_n, то есть нашли решение P(x_1. x_n). Если мы чуть-чуть поменяем значения на x_1, то новое решение Pбудет в каком-то смысле близким к решению P(x_1. x_n).

Пример 1: cистема уравнений

\left\<\begin</p>
<p>Дана система двух линейных уравнений: u + 10v = 11 \\ 100u + 1001v = 1101 \end\right.\,\!» width=»» height=»» /></p>
<p><img decoding=

«Возмутим» правую часть первого уравнения на 0,01 (вместо 11 напишем 11,01) и получим новую, «возмущённую» систему, решением которой является пара чисел , не имеющая ничего общего с решением невозмущённой системы. Здесь изменение значения одного параметра меньше чем на привело к совсем другому решению.

См. также

  • Плавающая запятая
  • Фиксированная запятая
  • Число обусловленности

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

  • Численные методы

Wikimedia Foundation . 2010 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *