Теория вероятности как увеличить шанс
Перейти к содержимому

Теория вероятности как увеличить шанс

  • автор:

Теории вероятностей: готовимся к собеседованию и разрешаем «парадоксы»

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов и набора неотрицательных чисел , таких что их сумма равна . Довольно часто все исходы считаются равновероятными, т.е. . В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество . Вероятность события , обозначается , — это сумма всех таких , что . В частности, вероятность пустого события равна нулю, а события равна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е. .

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка чеканная «правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов, . Так как мы договорились, что монетка «правильная», то разумно считать, что . Теперь давайте перечислим все возможные события и их вероятности.

  1. Не выпадет ни орёл, ни решка. Это соответствует событию , .
  2. Выпадет орёл, , .
  3. Выпадет решка, , .
  4. Выпадет орёл или решка, , .
Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов, , все их вероятности равны . Количество различных событий в этом эксперименте равно (это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

  1. Выпадет 1, , .
  2. Выпадет число большее трёх, , .
  3. Выпадет число кратное трём, , .
Пример: два подбрасывания монетки

В тех же предположениях о «симметричености» монеты мы определим множество элементарных исходов как множество упорядоченных пар

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е. .
Примеры событий.

  1. В первом броске выпадет решка, , .
  2. Выпадет хотя бы одна решка, , .
  3. Монетка дважды выпадет одной стороной, , .
Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов . Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с исходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е. . Но мы можем для удобства рассмотреть более простое множество элементарных исходов с 31 исходом, но с разными вероятностями: , , .

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию
.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством и вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

  1. Бросаем два игральных кубика: красный и синий. Определите вероятность того, что цифры на красном и синем кубиках совпадут.
  2. В этом же эксперименте с кубиками нужно найти наиболее вероятную сумму цифр на кубиках.
  3. Наудачу выбирается одно число от 1 до 20. Считая все числа равновозможными, определите вероятность того, что выбранное число:
    • чётно;
    • делится на 3;
    • делится и на 2, и на 3;
    • не делится ни на 2, ни на 3;
    • имеет сумму цифр 9;
    • имеет сумму цифр, делящуюся на 3.
Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть и — два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей и , другими словами , событие также называют суммой событий и и обозначают . Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых от общего числа, а жёлтых — . Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке шаров, то рассматриваемому событию соответствует шаров, т.е. от общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию , выражается, как (если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число от 1 до 100. Рассмотрим следующие события:

  1. число чётно;
  2. число нечётно;
  3. число делится на 4;
  4. число имеет остаток 2 при делении на 4;
  5. число имеет остаток 1 при делении на 4.

Формула включений и исключений

Как определить вероятность суммы двух событий, которые не являются несовместными? Рассмотрим следующий пример. Среди учеников школы процентов знают французский язык и знают немецкий. Доля тех, кто владеет обоими языками всего . Какова доля учеников, знающих хотя бы один из этих двух языков? Если нарисовать диаграмму, если мы сложим доли знающих французский и знающих немецкий, то мы дважды посчитаем тех, кто знает оба языка. Поэтому ответ: .

Этот же вопрос можно сформулировать и на языке теории вероятностей: с какой вероятностью случайно выбранный школьник знает хотя бы один из двух языков? Аналогичное рассуждение приводит нас к следующей формуле:

где — это пересечение событий и , т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в , и в (такое событие также называют произведением событий и и обозначают ).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Снова рассмотрим задачу про учеников и иностранные языки. Какая доля среди школьников знающих немецкий знает и французский? Ответ легко вычислить, посмотрев на картинку. Нужно вычислить отношение количества школьников знающих оба языка к количеству школьников знающих немецкий, т.е. . Переходя к языку теории вероятностей можно задаться следующим вопросом: какова вероятность, что случайно выбранный школьник знает французский при условии, что он знает немецкий? Пусть события и соответствуют тому, что случайно выбранный школьник знает французский и немецкий соответственно. Тогда искомая вероятность называется условной вероятностью наступления при условии и обозначается . По аналогии получаем следующую формулу для условной вероятности:

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

Словами: чтобы найти вероятность того, что произойдут оба события и , надо умножить вероятность события на условную вероятность события при известном .

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

Рассмотрим эксперимент с бросанием двух игральных кубиков: красного и синего. В этом эксперименте имеются 36 исходов, которые мы считаем равновозможными. Вероятность того, что на красном кубике выпадет тройка, равна (6 исходов из 36), вероятность того, что на синем кубике выпадет тройка, тоже равна . Какова вероятность того, что на синем кубике выпадет тройка при условии, что на красном выпала тройка? По формуле условной вероятности нужно посчитать отношение вероятности выпадения тройки на обоих кубиках к вероятности выпадения тройки на красном. Получаем . Заметим, что наличие информации о том, что на красном кубике выпала тройка, никак не влияет на вероятность выпадения тройки на синем. Такие события будем называть независимыми. Будем говорить, что события и независимы, если

(В этом определении предполагаются, что обе вероятности событий и строго больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Задачи для самопроверки
  1. Являются ли события «знать немецкий» и «знать французский» независимыми?
  2. Бросаем один игральный кубик. Являются ли независимыми события:
    1. «выпало чётное» и «выпало нечётное»,
    2. «выпало чётное» и «выпало 2»,
    3. «выпало чётное» и «выпало кратное трём».

    И подставив это в определение получаем формулу Байеса

    которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

    На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

    Когда мы можем говорить о вероятности?

    Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

    Какова вероятность того, что гуляя по улице вы встретите динозавра?

    Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

    Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

    Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

    Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

    Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

    Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

    Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

    Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% 🙂

    Парадоксы

    В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

    Парадокс Монти-Холла

    Этот очень известный парадокс. Об него было сломано много копий, в том числе даже именитые математики давали неправильный ответ.

    Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

    Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

    1. автомобиль равновероятно размещён за любой из трёх дверей;
    2. ведущий знает, где находится автомобиль;
    3. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    4. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

    Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов , соответствующим номеру двери, за которым находится автомобиль, и вероятностями . Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим , и «сменить дверь», обозначим .

    Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через дверь, которую игрок выбрал изначально, а через — дверь, за которой спрятан автомобиль. Тогда для любого событие «игрок выиграл при использовании стратегии » соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие , т.е. , и его вероятность . Событие «игрок выиграл при использовании стратегии » соответствует противоположному событию , т.е. , и его вероятность . Осталось ещё раз отметить, что, если этот анализ верен для любого выбора , поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

    Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

    Парадокс мальчика и девочки

    Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

    • У мистера Джонса двое детей. Старший ребёнок — девочка. Какова вероятность того, что оба ребёнка — девочки?
    • У мистера Смита двое детей. Хотя бы один ребёнок — мальчик. Какова вероятность того, что оба ребёнка — мальчики?

    Вероятностное пространоство задано и все вероятности равны . В первом случае нам известно, что выполнено событие . Поэтому при условии вероятность двух девочек равна 1/2.

    Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

    1. Выбирается случайный человек с двумя детьми и его спрашивают, есть ли среди его детей мальчик. Тогда вероятность двух мальчиков получится 1/3, т.к. это соответствует вероятности ММ при условии события .
    2. Выбирается случайный человек с двумя детьми, выбирается случайный его ребёнок (старший или младший) и спрашивается его пол. Этот эксперимент соответствует другому вероятностному пространству, в котором нужно ещё учесть выбор того ребёнка, про которого спрашивают. В нём будет 8 элементарных исходов, и нам подойдут четыре из них (ММ и спросили про старшего, ММ и спросили про младшего, МД и спросили про старшего, ДМ и спросили про младшего). Нам подходят два исхода, поэтому ответом будет 1/2.

    Парадокс Спящей Красавицы

    Обсуждение этого парадокса мотивировано вот этим постом на хабре, который вызвал широкое обсуждение, но описание этого парадокса есть и в википедии.

    Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

    Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

    Предлагается рассмотреть два альтернативных решения с разными результатами.

    Решение 1

    У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна .

    Решение 2

    Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна .

    Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

    Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

    Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

    Задача для самопроверки

    Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

    Бесконечный случай

    Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

    Вместо заключения

    Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

    БОНУС

    Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

    Поднять 100 долларов или пройти мимо? Теория вероятностей в повседневной работе

    Удивительное дело, но мы чаще действуем полагаясь на интуицию, чем на здравый смысл и расчет. К сожалению, это касается не только личной жизни, но и работы. Помните старую историю о том, стоит ли Биллу Гейтсу подбирать бумажку в сто долларов из под ног? Шутники рассчитывали сколько зарабатывает Гейтс в минуту и утверждали, что поднимая бумажку он тратит свое время неэффективно.

    Как вы считаете, стоило ему поднимать эти деньги? Не спешите с ответом. Пусть Гейтс зарабатывает в минуту 64 тысячи долларов. Это условное число. Нужно ли поднять бумажку в сто долларов? Подумайте.

    И тут мы получаем, ловушку, которая заложена изначально в самой постановке вопроса. Гейтс не затрачивает свое личное время для того, чтобы приумножать состояние, это делают деньги на банковских счетах. Поэтому нагнувшись, Билл получит дополнительные сто долларов и это выигрышная ситуация для него. Чувствуете разницу в постановке вопроса? Я не беру в рассмотрение то, что эмоционально как и любой человек, он обрадуется тому, что нашел такую купюру. И это будет связано с тем, что найти сто долларов редкая удача и мало кто может похвастаться этим. Вы находили сто долларов? Только отвечайте честно. Если да, то что ощущали? Вероятность такого события крайне мала, отсюда высокая эмоциональная окраска.

    Об автобусе и горилле на поле, шоу на ТВ и открытие двери с гоночным автомобилем, который можно забрать домой. Теория вероятностей в действии.

    В нашей работе часты ситуации, когда надо принимать решение и мы сталкиваемся с двумя типами проблем. Недостаток информации. А также неверная интерпретация исходных условий, невнимательность к деталям. Второй тип проблем можно исправить тщательностью в подготовке. Давайте немного остановимся на таких проблемах.

    Проблема №1. Неверная интерпретация исходных условий

    В институте мы проводили математический тест на способность считать в уме. Вы можете потренироваться в нем, с вашими друзьями и знакомыми, он отнимет, буквально, несколько минут.

    Задача звучит так. Вы говорите вашему собеседнику, чтобы он внимательно считал, так как тест связан с математикой. И начинаете говорить, что на конечной остановке автобуса в нем никого не было. Потом в него село 5 человек. На следующей остановке вышло 3 человека, а вошло 14. Следующая остановка минус 3, плюс 11. Потом еще одна остановка -4, +6. И так далее. И снова конечная остановка.

    Как правило, начинают считать количество людей, просят вас повторять сколько человек вышло, сколько осталось. Но ваш вопрос звучит иначе, — «Сколько остановок проехал автобус?». Правильно на этот вопрос отвечают единицы, так как изначально ожидают типичного действия, а именно расчетов, так как тест на математику и вы об этом упоминали. Это типичный тест показывающий, что человек не уточняет исходные условия, не обращает внимания на детали и действует сообразно своему понимаю теста. Которое, как мы видим, оказывается неверным.

    Когда будете проводить тест, не называйте никак остановки, это облегчает последующий подсчет, а также портит тест. Количество остановок должно быть довольно большим (более 10), а также вам стоит считать, чтобы не ошибиться с количество тех, кто вышел и зашел.

    Другой вариант теста, стал уже классикой жанра, это горилла на баскетбольном поле. Испытуемых просят посчитать сколько пассов мяча делают игроки, в середине игры сквозь играющих проходит человек в костюме гориллы. Примерно половина тех, кто считал пасы, просто не замечает его. Они сосредоточились на другой задаче. И это особенность нашей психологии. Ниже пример видео из классического исследования.

    В качестве вывода могу сказать следующее, очень важно правильно и тщательно оценить исходные условия. Что делать, а главное зачем. И уже потом действовать, но тут мы переходим к оценки вероятностей или пункту №2.

    Проблема №2. Как сделать правильный выбор

    У вас куча предложений о заключении новых договоров, вы не способны принять каждое из них. Какие-то выглядят интереснее, какие-то не так хороши. Встает в полный рост ситуация выбора в которой большинство из нас полагается на интуицию, но не здравый смысл и расчет. Вспомнить ситуации выбора из рабочих будней для каждого из нас не составит труда. Но как мы выбираем? Я полагаюсь в таких ситуациях на теорию вероятностей, которая и помогает принять окончательное решение. К сожалению, во многих высших учебных заведениях не преподают теорию вероятностей, либо делают это настолько плохо, что отбивают всякую охоту знать этот предмет. Однако теория вероятностей работает и помогает принимать решения. Позвольте заинтересовать вас этой теорией и побудить прочитать больше, только одним примером, который стал классическим.

    Задача Монти Холла

    В телевикторине участники должны выбрать одну из трех дверей. За одной дверью находится машина, за двумя другими нет ничего. Участник, выбирает дверь, а ведущий, которому известно, что находится за каждой из дверей, открывает одну из оставшихся, конечно пустышку. Затем он говорит участнику, — «Вы смените дверь или выберете другую?». Вопрос, который мы рассмотрим в том, выгодно ли участнику сменить дверь или выгодно оставить свой выбор.

    Прежде, чем идти дальше, пожалуйста, подумайте и ответьте на этот вопрос. Оставляете дверь или меняете?

    В 1990 году этот вопрос разделил Америку на два лагеря. С одной стороны была Мэрилин вос Савант, вошедшая в «книгу рекордов Гиннесса»как человек с самым высоким уровнем интеллекта равным 228. С другой стороны математики и читатели воскресной газеты, в которой Мэрилин высказала свою точку зрения на вопрос, менять или нет, дверь. Она получила несколько десятков тысяч отзывов, из которых более сотни были написаны дипломированными математиками, докторами наук. 92 процента написавших считали, что Мэрилин ошибается. Сделали свой выбор? Честно запишите его на бумажке, а потом поделитесь в комментариях, что вы выбрали. Заранее спасибо, за вашу честность.

    Негодование большинства вызвала стратегия предложенная Мэрилин. Она предложила сменить дверь. Не оставить, а именно сменить, так как это повышает шансы на выигрыш.

    Ответ на задачу Монти Холла
    В задаче Монти Холла фигурирует три двери: за одной нечто ценное, скажем гоночная машина, за двумя другими — нечто гораздо менее интересное, например, русско-русский разговорник. Вы выбрали дверь №1. В таком случае пространство элементарных событий представлено следующими тремя возможными исходами:

    Машина за дверью №1
    Машина за дверью №2
    Машина за дверью №3

    Вероятность каждого исхода — 1 из 3. Поскольку предполагается, что большинство выберет машину, то первый исход будем считать выигрышным, а шансы угадать равны 1 из 3.

    Далее по сценарию, ведущий, заведомо знающий, что находится за каждой из дверей, открывает одну дверь из не выбранных вами, и оказывается, что там лежит разговорник. Поскольку, открывая эту дверь ведущий использовал свое знание о предметах за дверями, чтобы не раскрыть местоположение машины, данный процесс нельзя назвать случайным в полном смысле этого слова. Существуют два варианта, которые стоит обдумать.

    Первый — вы изначально делаете правильный выбор. Назовем такой случай «счастливой догадкой». Ведущий наугад откроет либо дверь 2, либо дверь 3, и если вы предпочтете сменить свою дверь, вместо шикарной, с ветерком поездки станете владельцем разговорника. В случае «счастливой догадки» лучше, конечно, не соблазняться предложением сменить дверь, однако вероятность выпадения «счастливой догадки» равна всего 1 из 3.

    Второй — вы сразу же указываете не на ту дверь. Назовем такой случай «ошибочной догадкой». Шансы, что вы не угадаете, равны 2 из 3, так что «ошибочная догадка» в два раза вероятнее, чем «счастливая догадка». Как «ошибочная догадка» отличается от «счастливой догадки»? При «ошибочной догадке» машина находится за одной из тех дверей, которые вы обошли своим вниманием, а за другой — книжка. В противоположность «счастливой догадке» в этом варианте ведущий открывает невыбранную дверь не наугад. Поскольку он не собирается открывать дверь с машиной, он именно что выбирает ту самую дверь, за которой машины нет. Другими словами, в «ошибочной догадке» ведущий вмешивается в то, что до той поры называлось случайным процессом. Таким образом, процесс уже не может считаться случайным: ведущий пользуется своими знаниями, чтобы повлиять на результат, и тем самым отрицает само понятие случайности, гарантируя, что при смене двери участник получит авто. Из-за подобного вмешательства происходит следующее: вы оказываетесь в ситуации «ошибочной догадки», и, следовательно, выигрываете
    при смене двери и проигрываете, если отказываетесь сменить ее.

    В итоге получается: если вы оказываетесь в ситуации «счастливой догадки» (вероятность которой 1 из 3), вы выигрываете при условии, если остаетесь при своем выборе. Если вы оказываетесь в ситуации «ошибочной догадки» (вероятность 2 из 3), то под влиянием действий ведущего вы выигрываете при условии, если меняете первоначальный выбор. Итак, ваше решение, сводится к догадке, в какой ситуации вы окажетесь? Если вы чувствуете, что вашим изначальным выбором руководит шестое чувство, что вас направляет сама судьба, может, и не стоит менять свое решение. Но если вам не дано завязывать ложки узелками только силой мысли, то наверняка шансы того, что вы попали в ситуацию «ошибочной догадки», равны 2 к 1, так что лучше сменить дверь.

    Статистика телепередачи подтверждает, что те, кто менял свой выбор, выигрывали в два раза чаще. Вуаля.

    Надеюсь, что этот пример заставит вас задуматься, как быстро взять в руки книгу о теории вероятностей, а также начать ее применять в своей работе. Поверьте, это интересно и увлекательно, да и практический толк есть. Надеюсь пятничные размышления о психологии, предпосылках задач и теории вероятностей, не заставили вас скучать.

    P.S. Описание задачи Монти Холла взял из книги «Несовершенная случайность» Леонарда Млодинова. Рекомендую ее к прочтению, это научпоп.

    • психология
    • теория вероятностей

    Теория вероятностей

    В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.

    Больше задач – в статье «Задание 2 Профильного ЕГЭ по математике. Теория вероятностей».

    Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.

    Благоприятным мы называем исход, способствующий наступлению данного события.

    Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

    Очевидно, что вероятность – величина положительная и не может быть больше единицы.

    Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна

    Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:

    1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.

    В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.

    Просто применили определение вероятности.

    2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

    Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:

    События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

    Например, вы бросаете монету. «Выпал орел» и «выпала решка» — несовместные события.

    Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
    Вероятность суммы несовместных событий равна сумме их вероятностей.

    Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
    Вероятность выпадения числа, которое делится на 3,

    Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.

    События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

    Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

    3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?

    Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
    Событие А. Случайно выбранного мужчину зовут Иван Петрович
    Событие В. Мужчину зовут Петр Иванович.

    Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
    А вероятность оказаться Петром Ивановичем точно такая же:

    4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

    Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.

    5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

    Пусть Андрей первым занял место в группе (неважно, в какой). И, кроме него, осталось еще 25 человек, среди которых его друг Сергей. Сколько у Сергея шансов оказаться в той же группе, что и Андрей? В группе должно быть 13 человек, то есть Андрей и еще 12. Значит, вероятность того, что Сергей окажется в той же группе, что и Андрей, равна , то есть 0,48.

    Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.

    Лень разбираться самому?
    Присоединяйся к мини-курсу по теории вероятностей

    6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?

    Начнем с числа возможных исходов. Если мы бросаем монету, возможных исходов два – орел или решка.
    Бросим монету два раза (или две монеты одновременно, все равно). И вот уже 4 возможных исхода:
    ОО
    ОР
    РО
    РР
    (буквой О обозначен выпавший «орел», буквой «р» — решка.
    Каждый следующий бросок монеты увеличивает число возможных исходов в 2 раза (орел или решка).
    Для 10 бросков монеты количество возможных исходов, очевидно, равно

    По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.

    Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.

    Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков

    Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.

    Пронумеруем броски: 1,2,3…10.

    Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.

    Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…

    Пронумеруем таким образом все благоприятные исходы.

    12, 13, 14, 15, 16, 17, 18, 19, 1 10

    23, 24, 25, 26, 27, 28, 29, 2 10

    34, 35, 36, 37, 38, 39, 3 10

    45, 46, 47, 48, 49, 4 10

    56, 57, 58, 59, 5 10

    9 10
    Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.

    Поделив на , получим, во сколько раз выпадение решки ровно 8 раз более вероятно, чем выпадение решки ровно 9 раз:

    Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.

    7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

    Изобразим все возможные исходы.

    По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?

    Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.

    Вероятность того, что стекло с первой фабрики, равна 0,45.

    Вероятность того, что стекло сделано на второй фабрике, равна 0,55.

    Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.

    Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.

    Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна

    Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
    Вероятность суммы несовместных событий равна сумме вероятностей.

    Значит, вероятность купить бракованное стекло равна:

    Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?

    8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?

    Назовем билеты, которые студент выучил, «счастливыми».
    Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна

    Если идти отвечать вторым, возможны два случая:

    1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.

    2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.

    Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:

    Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.

    Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.

    Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Теория вероятностей» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.

    Публикация обновлена: 05.10.2023

    Лучшие задачи на вероятности и случайности

    Используйте этот набор задач на вероятности, чтобы проверить себя и друзей. Есть вероятность, что после этого они перестанут быть вашими друзьями.

    Футболист против законов математики

    Представьте, что вам предложили пари:

    1. Вы выбираете один из двух вариантов игры с мячом.
    2. Футболист играет в предложенную вами игру.
    3. Если футболист выигрывает, вы и футболист получаете деньги. Если нет — никто ничего не получает.

    Первый вариант игры — ударить по мячу один раз. Если мяч попадёт в ворота — вы выиграли.

    Второй вариант игры — ударить по мячу три раза. Если хотя бы два раза из трёх мяч попал в ворота — вы выиграли.

    За выигрыш в любом варианте вам заплатят 50 000 рублей. Какой вариант игры лучше выбрать и почему? Вы знаете, что в среднем футболист забивает три мяча из пяти, но в истории игрока бывало и много непопаданий подряд.

    Вероятность

    В таких задачах всё зависит от вероятностей — насколько возможно, что это всё произойдёт. Вероятность чаще всего измеряется в процентах: чем они выше, тем вероятнее случится нужное нам событие. Например, когда мы подкидываем монету, вероятность того, что выпадет орёл — 50%. Это значит, что в половине случаев действительно выпадет орёл. А вероятность бросить кубик и сразу получить 6 очков — около 17% или ⅙ , потому что у кубика 6 равноценных граней.

    Давайте обозначим символом р вероятность того, что футболист при любом ударе забивает гол в ворота. Получается, в первом варианте наши шансы получить деньги тоже равны р, потому что футболист должен забить с первого раза. Так как вероятность — это число от 0% до 100% (это то же самое, что от 0 до 1), мы имеем два выражения:

    р — вероятность, что футболист попадёт в ворота.

    (1 — р) — вероятность, что футболист промахнётся.

    Если мы выбрали первую игру с одним ударом, вероятность выигрыша равна вероятности попадания в ворота, то есть р. Зная, что футболист попадает три раза из пяти, мы можем смело сказать: вероятность выигрыша в первой игре — 60%. Неплохая вероятность и пока всё очевидно.

    А что со второй игрой? Стоит ли пробовать её, если мы знаем вероятность победы в первой? Давайте хотя бы сравним.

    Для второго варианта игры есть восемь разных путей развития событий — комбинаций попаданий и непопаданий в ворота. Давайте занесём их в таблицу, и если в какой-то попытке мы попали в ворота — поставим на этом месте галочку. Рядом запишем значения вероятностей этих событий. Вероятности перемножаются:

    Первый удар Второй Третий Вероятность Выиграли?
    (1 — p) × (1 — p) × (1 — p) Нет
    (1 — p) × (1 — p) × р Нет
    (1 — p) × p × (1 — p) Нет
    (1 — p) × р × р Да
    p × (1 — p) × (1 — p) Нет
    p × (1 — p) × р Да
    p × p × (1 — p) Да
    p × p × p Да

    В таблице приведены все варианты развития событий, никаких других быть не может. Судя по таблице, из восьми вариантов развития событий мы выигрываем в четырёх. Рассмотрим варианты выигрыша.

    В трёх выигрышных случаях футболист промахивается один раз. Вероятности у этих трёх сценариев:

    Заметили, что все эти формулы можно привести к одному виду?

    А эта формула, в свою очередь, приводится к такому виду:

    В четвёртом призовом случае вы забьёте мяч три раза подряд, и вероятность этого такая:

    Чтобы узнать общую вероятность выигрыша, нужно сложить первые три и четвёртую. Для этого достаточно математики седьмого класса. Сделаем это пошагово:

    3p² — 2p³ — это вероятность нашего выигрыша во второй игре.

    Мы помним, что вероятность выигрыша в первой игре равна p . Осталось выяснить, что в нашем случае больше: р или 3р² — 2р³ . Та игра, где вероятность выше, нам и нужна.

    Математическое ожидание

    Давайте на секунду забудем, что мы знаем точность нашего футболиста. Мы не в курсе, что он забивает 3 пенальти из 5. Мы лишь знаем, что его вероятность попадания в ворота равна р, при этом если p = 0, мы ничего не выиграем, а если p = 100% (то есть 1), мы точно выиграем 50 000 рублей. Осталось понять, какова вероятность выигрыша в промежуточных сценариях между 0% и 100%. Для этого понадобится математическое ожидание.

    Математическое ожидание — это произведение результата на вероятность его получения. В нашем случае — произведение денежного приза на вероятность его получения. Это число не имеет никакого отношения к реальности — по правилам игры при точности футболиста 50% мы не получим 25 000 рублей. Мы считаем математическое ожидание, только чтобы оценить свои шансы.

    В первом варианте игры наше математическое ожидание равно 50 000 × р , во втором оно же равно 50 000 × (3р² — 2р³) .

    Чтобы понять, какое ожидание лучше, давайте нарисуем два графика. Они покажут зависимость результата математического ожидания каждого случая от вероятности того, что футболист забьёт гол. Проще говоря, мы возьмём вероятность гола в 1% и посмотрим, чему будет равно математическое ожидание в обоих случаях. Потом возьмём вероятность 2% и тоже посмотрим на результат ожидания. Потом вероятности 3%, 4%, 5% и так далее. Когда дойдём до 100%, картина будет ясна:

    Математическое ожидание от игр

    Оранжевая линия показывает график математического ожидания от первого варианта игры. Тут всё понятно: чем точнее футболист бьёт по воротам, тем больше вероятность, что мы выиграем, связь линейная.

    Серая линия показывает наши шансы в варианте игры с тремя ударами. Тут начинается самое интересное:

    Если точность футболиста меньше 50%, то наше математическое ожидание от второго варианта игры ниже, чем от первого. То есть мазила скорее промахнётся, чем попадёт. И с точки зрения теории вероятностей лучше бы он ударил один раз, чем три.

    Если точность футболиста больше 50%, то первая игра даёт более низкое математическое ожидание, чем вторая.

    Графики пересекаются ровно посередине, в вероятности 50%. Это значит, что если бы у нашего футболиста всегда было 5 попаданий из десяти, то вероятность выиграть в любой из двух игр у нас одинаковая.

    Это можно объяснить ещё и так. Если футболист забивает плохо, то на победу можно не рассчитывать. Максимум, что случится — вам повезёт, и футболист при ударе случайно забьёт гол. Так как такая удача случится, скорее всего, только один раз, то и выбрать в этом случае нужно вариант с одним ударом. А если футболист в целом неплох, то во второй игре у него больше шансов реабилитироваться и отыграться, поэтому нужно ставить на вторую игру.

    И финальный штрих: так как мы знаем, что p = 60%, нам очень легко получить математические ожидания от двух игр, зная все вероятности:

    Первая игра. Матожидание = 50 000 × 0,6 = 30 000

    Вторая игра. Матожидание = 50 000 × (3 × 0,62 — 2 × 0,63) = 32 400

    Матожидание от второй игры немного выше, чем от первой. Мы, конечно, не получим этих денег именно в таком виде. Но по этому числу мы видим, что вторая игра с точки зрения вероятностей нам выгоднее.

    Важное о вероятностях

    Рассчитывая вероятности, помните, что вероятность — это не гарантия. В момент игры может подуть сильный ветер, начаться дождь или футболист может быть мотивирован специально мазать мимо ворот (такое сплошь и рядом в теории игр). Вероятности работают только на больших выборках и в строго контролируемых условиях.

    Например, нам могут предложить сыграть 100 игр в одинаковых условиях, давая футболисту возможность достаточно отдыхать после каждой игры. Тогда математическое ожидание будет иметь практический смысл.

    Но если нам предложат 100 игр подряд на открытом воздухе, после каждой из которых футболист не будет отдыхать, то мы получим как минимум два эффекта:

    • футболист будет уставать, его показатель точности со временем снизится;
    • за время ста игр может смениться температура воздуха и ветер, что повлияет на точность.

    Поэтому математическое ожидание не является гарантией выигрыша. Чем применять матожидание в ставках на спорт или в казино, лучше найти высокооплачиваемую работу программистом.

    Морфеус и математика против агентов Матрицы

    Однажды агенты Матрицы поймали Морфеуса и дали ему выбирать его же таблетки — красные или синие. Красная возвращает Морфеуса в реальный мир, а синяя навсегда оставляет его внутри Матрицы и в руках агентов. Выбор происходит так: Морфеус сам берёт 50 красных и 50 синих таблеток, как угодно раскладывает их по двум одинаковым коробкам, а потом агент Матрицы сам выбирает любую коробку и не глядя достаёт оттуда случайную таблетку.

    Как Морфеусу нужно разложить все таблетки по коробкам, чтобы максимально увеличить свои шансы на возвращение в реальность?

    Если сложить все таблетки в одну коробку, то шанс вытянуть красную будет 50/100 или 50%. Такая же вероятность будет, если разложить синие и красные таблетки по коробкам максимально равномерно: 25/50 в каждой коробке. Наша задача — увеличить эту вероятность.

    Чтобы это сделать, Морфеус должен в одну коробку положить только одну красную таблетку, а в другую коробку — все остальные таблетки вместе. Теперь посчитаем новые вероятности.

    Шанс, что агент выберет коробку, где лежит только одна таблетка, — 50%, потому что коробки одинаковые. А шанс вытянуть красную таблетку, когда в коробке и так только одна красная, — 100%. Получаем, что общая вероятность спасения Морфеуса в этом случае:

    0,5 (вероятность выбора коробки) × 1 (вероятность вытянуть красную таблетку) = 0,5, или 50%.

    Посчитаем шансы для другого случая. Вторую коробку тоже вытянут с вероятностью 0,5, как и в первом случае. Но вероятность вытянуть одну красную таблетку из 99, где 49 из них тоже красные, равна 49/99 или ~0,495. Перемножаем, чтобы получить общую вероятность спастись в этом случае:

    0,5 (вероятность выбора коробки) × 0,495 (вероятность вытянуть красную таблетку) = 0,2475, или 24,75%.

    Чтобы узнать общую вероятность на спасение в обоих случаях, складываем вероятности в каждом случае:

    Общая вероятность = вероятность в первом случае + вероятность во втором случае.

    Общая вероятность = 50% + 24,75% = 74,75%.

    Получается, что Морфеусу удалось повысить свои шансы на спасение почти в полтора раза!

    Задача про секс и математику

    У одного молодого человека было две подруги, они жили в противоположных концах города — на востоке и западе. Парень работал в центре. Каждый день после работы он спускался в метро и садился на первый приходящий поезд. В какую сторону поедет поезд — к той девушке он и отправлялся.

    Количество поездов в каждую сторону одинаковое, но парень стал замечать, что в какое бы время он ни выходил с работы, к западной девушке он приезжал в три раза чаще, чем к той, что жила на востоке. Он подумал, что это судьба, и женился на ней.

    А действительно ли это судьба или она тут ни при чём? Почему так произошло?

    Допустим, у нас поезд отходит каждые две минуты с каждой платформы без перерывов — для чистоты эксперимента допустим также, что у нас круглосуточное метро. А дальше всё дело в интервалах между отправлениями с разных платформ.

    Первый поезд на запад у нас будет отходить в начале каждого целого двухминутного отрезка: в 0 минут, 2 минуты, 4 минуты и так далее. Запишем время отправления в минутах и секундах:

    А вот поезд на восток пусть отходит со смещением в 30 секунд относительно западного:

    И там, и там интервал между поездами в одном направлении одинаковый — 2 минуты. Но получается, что после того, как ушёл поезд на запад, у парня есть 30 секунд, чтобы дождаться поезда на восток, если он не успел на первый. А вот потом у него будет целых полторы минуты после отправления восточного, чтобы уехать на запад!

    Это значит, что если он каждый раз случайно приходит на станцию, то он должен попасть в 30-секундный интервал, чтобы уехать на восток, или попасть в 90-секундный интервал, чтобы уехать на запад. А раз второй интервал в 3 раза больше первого, то и попадать в него и уезжать на запад парень будет в 3 раза чаще.

    Иногда судьба — это простая математика.

    Новая должность и выбор зарплаты

    Однажды программист устраивался на работу, где ему предложили самому выбрать себе зарплату. Но сделали это хитро, так, чтобы сразу проверить его профпригодность: дали на выбор два конверта.

    В каждом конверте лежат листочки с офферами — это документ, где написано предложение с должностью, условиями работы и зарплатой. Два конверта — два оффера. Конверты запечатаны.

    В одном оффере денег в два раза больше, чем в другом, но никто не знает, где какая сумма. Программисту можно открыть один конверт, прочитать оффер и решить — оставить этот конверт или выбрать другой. Подскажите программисту, что лучше: оставить этот, выбрать другой или без разницы?

    Решение обычного человека

    Если рассуждать с позиции простого здравого смысла, решение будет таким: игнорируем эти тупые игры, открываем оба конверта, и если среди них есть здравый оффер — соглашаемся, а нет — до свидания. Ишь чего вздумали!

    Можно ещё сказать: «Мне не подходят оба оффера, но если вы готовы предложить мне сумму этих двух офферов, позвоните. Мой номер — произведение первых 10 простых чисел. »

    Но можно подойти к решению с точки зрения математики и статистики.

    Решение программиста

    Чтобы узнать правильный ответ, нам понадобится математическое ожидание — мы уже рассказывали про него выше в задаче про футболиста.

    Допустим, что программист выбрал один конверт и обнаружил в нём оффер на Х рублей. Значит, в другом конверте будет оффер либо на 0,5Х рублей, либо на 2Х рублей.

    Посчитаем математическое ожидание при выборе того или иного решения. Вероятность нахождения большей или меньшей суммы одинаково и равно 50% или 0,5. Значит, если в конверте лежит 0,5Х рублей, матожидание для него будет равно 0,5Х × 0,5 = 0,25Х. А если там лежит 2Х рублей, то математическое ожидание будет такое: 2Х × 0,5 = Х.

    Теперь сложим эти числа, чтобы узнать общее матожидание, если мы выберем другой конверт вместо открытого: 0,25Х + Х = 1,25Х.

    В открытом конверте у нас всегда оффер на Х рублей. 1,25X > X, поэтому, с точки зрения математики, выгоднее выбрать второй конверт, так как суммарная вероятность получить больше денег будет выше.

    Также важно помнить, что мы говорим о математическом ожидании и статистике: всё это работает на сотнях и тысячах конвертов, если усреднить результат. В отдельном конкретном случае это рассуждение не имеет смысла.

    Как выиграть в соревнованиях, когда играешь хуже всех

    Андрей, Вова и Сергей участвуют в соревнованиях на мячах, их цель — кинуть мяч так, чтобы попасть в любого соперника. В кого попали — выбывает. Все кидают строго по очереди.

    Все знают, что вероятность того, что Андрей попадёт в цель с первого раза, равна 0,3. Вероятность того, что попадёт Сергей — 0,5, а Вова вообще никогда не промахивается, у него вероятность 1,0.

    Участники по очереди кидают мяч друг в друга, самостоятельно выбирая цель, до тех поp, пока не останется только один человек.

    Как Андрею увеличить свои шансы на победу, если он кидает мяч первым, но делает это хуже всех?

    Сначала попытайтесь решить задачу самостоятельно, а если зайдёте в тупик — открывайте решение.

    Оптимальное решение — специально кинуть мяч в сторону от всех, чтобы целенаправленно промахнуться. Следите за цифрами.

    Если Андрей кидает мяч в Вову, то попадает с вероятностью 0,3 и выиграет, но после этого Сергей кинет в Андрея с вероятностью 0,5. Чтобы Андрей победил, Сергей должен промахнуться, а Андрей в ответ — попасть. Вероятность такого исхода = 0,3 × 0,5 = 0,15. А общая вероятность победить у Андрея с такой стратегией равна:

    Если Андрей кидает первый мяч в Сергея и попадает с той же вероятностью 0,3, то следующим броском Вова попадает в Андрея, потому что никогда не промахивается. В этой ветке событий Андрей проиграл вообще без шансов выиграть. Если же Андрей промахивается, то Вова будет кидать в Сергея (чтобы выбить наиболее сильного соперника), и, как всегда, попадёт. Тогда Андрей следующим броском выбивает Вову с вероятностью 0,3. Считаем общую вероятность выигрыша:

    Андрей кидает в Сергея и попадает: шансов на выигрыш — 0.

    Андрей кидает в Сергея и промахивается — вероятность 0,7.

    Вова кидает в Сергея и попадает — вероятность 1.

    Андрей кидает в Вову и попадает — вероятность 0,3.

    Вероятность выиграть в таком случае — 0,7 × 1 × 0,3 = 0,21.

    Общая вероятность победить по итогам двух вариантов развития: 0 + 0,21 = 0,21.

    А вот если Андрей специально промахивается, то события развиваются так (исходя из здравого смысла у остальных соперников).

    Вове невыгодно кидать мяч в Андрея, потому что когда он выйдет из игры, Сергей выбьет Вову с вероятностью 0,5. Вове выгоднее кинуть мяч и точно попасть в Сергея, потому что у Андрея вероятность на победу всего 0,3.

    Получается, что Вова кидает мяч в Сергея, выбивает его, а затем Андрей кидает в Вову и выигрывает с вероятностью 0,3. Запишем это:

    Андрей специально промахивается — вероятность 1.

    Вова попадает в Сергея — вероятность 1.

    Андрей попадает в Вову — вероятность 0,3.

    Общая вероятность события: 1 × 1 × 0,3 = 0,3.

    Получается, что максимальные шансы на победу у Андрея только тогда, когда он специально промахнётся. Звучит странно, но цифры есть цифры.

    Любите данные? Посмотрите вот это

    Возможно, у вас получится построить карьеру в мире дата-сайенса. Это новое направление, в котором очень нужны люди. Изучите эту сферу и начните карьеру в ИТ: старт — бесплатно, а после обучения — помощь с трудоустройством.

    Любите данные? Посмотрите вот это Любите данные? Посмотрите вот это Любите данные? Посмотрите вот это Любите данные? Посмотрите вот это

    Получите ИТ-профессию

    В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *