Как доказывать теоремы
Перейти к содержимому

Как доказывать теоремы

  • автор:

Как доказывать теорему?

Если в обычной жизни, для того чтобы на что-то указать, достаточно сказать: «Смотри!» и все сразу становится ясно, то в науке, любой факт, должен подтверждаться для того чтобы его признали. То же самое творится с теоремами в математике, ведь они являются недоказанными утверждениями. Они доказываются путем цепочки логических мышлений и с помощью аксиом, которые не ставятся под сомнение.

Итак, как нужно доказывать теорему? Теорему можно доказать путем логического мышления и выстраивания логической цепочки. Также применяются заранее доказанные теоремы и аксиомы. Все предельно просто, если включить логику и действовать по конкретному алгоритму доказывания теорем.

Каким правилам следовать в доказывание теоремы?

  1. Нужно найти последовательность аксиом, теорем и т.д., которые могли бы помочь доказывать теорему. Следуя им нужно составить логичную цепочку.
  2. Нет обязательных правил, которые помогли бы доказать теорему. Правила указывают возможное направление, которое поможет доказать теорему и носят название эвристические правила.
  3. Объекты, о которых речь в теореме нужно заменить другими названиями и определениями, которые могли бы отражать его сущность и указать на конкретные характеристики объекта.
  4. В случае сложной теоремы допускается разделение теоремы на части и доказательство каждой части по отдельности.
  5. Доказывать теорему нужно в двух направлениях, от заключения к условиям и от условий к заключению.
  6. Начиная доказывать теорему нужно идти с отрицанием того что нужно доказать, чтобы в итоге доказать что первоначальное предположение подтвердилось. Итак, начинать нужно со слов «предположим обратное», а в конце дойти до вывода, что «первоначальное подтверждение является верным».

Что касается практической части, с чего и следует начать, это создать графический чертеж теоремы. Для этого нужно создать две графы «Дано» и «Доказано». В первой графе записываете те факты, которые известны, а во второй, то, что следует доказать.

Заметка: если у вашего папы скоро днюха, самое время выбрать подарок отцу на день рождение (http://www.gift-for-man.ru/).

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Способы доказательства теорем и приемы решения геометрических задач

Аксиома есть очевидная истина, не требующая доказательства.

Теорема или предложение есть истина, требующая доказательства.

Доказательство есть совокупность рассуждений, делающих данное предложение очевидным.

Доказательство достигает своей цели, когда при помощи его обнаруживается, что данное предложение есть необходимое следствие аксиом или какого-нибудь другого предложения, уже доказанного.

Всякое доказательство основано на том начале, что при правильном умозаключении из истинного предложения нельзя вывести ложного заключения.

Состав теоремы. Всякая теорема состоит из двух частей, a) условия и b) заключения или следствия.

Условие иногда называют предположением. Оно дано и поэтому иногда получает название данного.

Обратная теорема. Предложение, у которого заключение данной теоремы делается условием, а условие заключением, называется теоремой обратной данной.

В таком случае данная теорема называется прямой.

Две теоремы в совокупности, прямая и обратная, называются взаимно-обратными теоремами.

Они находятся в таком взаимном отношении, что, выбрав любую из них за прямую, можно другую принять за обратную.

В двух взаимно-обратных предложениях одно из них вытекает как необходимое следствие другого.

Если в теореме мы обозначим условие буквой, стоящей на первом месте, а заключение буквой, стоящей на втором месте, то прямую теорему можно схематически представить выражением (Aa), а обратную выражением (aA).

Выражение (Aa) схематически представляет предложение: если имеет место A, то имеет место a.

Если для данного предложения (Aa) имеет место и теорема (aA), то обе теоремы (Aa) и (aA) называются взаимно-обратными теоремами.

Примером двух таких взаимно-обратных теорем могут послужить теоремы:

Первая теорема. В треугольнике против равных сторон лежат равные углы.

Вторая теорема. В треугольнике против равных углов лежат равные стороны.

В первой теореме данным условием будет равенство сторон треугольника, а заключением равенство противолежащих углов, а во второй наоборот.

Не всякая теорема имеет свою обратную.

Примером арифметического предложения, не имеющего своего обратного, может послужить следующая теорема. Если в двух произведениях множители равны, то и произведения равны.

Обратное предположение несправедливо. Действительно, из того, что произведения равны, не следует, что множители равны.

Примером геометрического предложения, для которого обратное предложение не имеет места, может послужить теорема: во всяком квадрате диагонали равны.

Предложение обратное этому будет: если диагонали четырехугольника равны, то он будет квадратом.

Это предположение неверно, ибо диагонали бывают равными не в одном квадрате.

Так как обратное предположение не всегда справедливо, то каждый раз обратное предложение требует особого доказательства.

В теории геометрических доказательств весьма важно иногда знать, когда данное предложение допускает свое обратное.

Для этой цели может послужить следующее правило обратимости. Когда в предположении всем возможным и различным условиям соответствуют все возможные и различные заключения, обратное предложение имеет место.

Рассмотрим для примера.

Прямое предложение. Если два треугольника имеют по две равные стороны, то третья сторона будет больше, равна или меньше третьей стороны другого треугольника, смотря по тому, будет ли угол между равными сторонами больше, равен или меньше соответствующего угла другого треугольника.

В этом предложении трем различным и возможным предположениям об угле соответствуют три различных и возможных заключения о противолежащей стороне, поэтому, согласно с правилом обратимости, данная теорема допускает обратное предположение:

Когда два треугольника имеют по две равных стороны, угол между ними будет больше, равен или меньше соответствующего угла другого треугольника, смотря по тому, будет ли третья сторона больше, равна или меньше третьей стороны данного треугольника.

Кроме обратной прямая теорема может иметь свою противоположную.

Противоположная теорема есть такая, в которой из отрицания условия вытекает отрицание заключения.

Противоположная теорема может иметь свою обратную.

Чтобы обобщить все эти теоремы, мы их представим схематически в следующей общей форме:

  1. Прямая или основная теорема.Если имеет место условие или свойство A, то имеет место заключение или свойство B.
  2. Обратная. Если имеет место B, то имеет место A.
  3. Противоположная. Если не имеет места A, то не имеет места B.
  4. Обратная противоположной. Если не имеет места B, то не имеет места A.

Следующие примеры поясняют на частных случаях взаимное отношение этих теорем:

  1. Прямая теорема. Если при пересечении двух данных прямых третьей соответственные углы равны, то данные прямые параллельны.
  2. Обратная теорема. Если две прямые параллельны, то при пересечении их третье, соответственные углы равны.
  3. Противоположная. Если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.
  4. Обратная противоположной. Если прямые не параллельны, соответственные углы не равны.

При геометрическом изложении теорем достаточно доказать только две из этих трех теорем, тогда остальные две теоремы справедливы без доказательства.

На этой связи теорем основан прием, по которому для доказательства обратной теоремы ограничиваются часто только доказательством теоремы противоположной.

Способы геометрических доказательств

Для доказательства геометрических теорем существует два основных способа: синтетический и аналитический.

Эти методы называют иногда сокращенно синтезом и анализом.

Синтез есть такой метод доказательства, в котором данное предложение является необходимым следствием другого, уже доказанного.

В синтезе цепь доказательств начинается с какого-нибудь известного предложения и оканчивается данным предложением. При доказательстве исходное предложение сопоставляется с аксиомой или с другим уже известным предложением. Синтетический способ удобен для вывода таких новых предложений, которые заранее не обозначены. Для доказательства же данного предложения он представляет много неудобств. В нем не видно: a) какую из известных теорем нужно выбрать для того, чтобы доказываемое предложение вытекало как ее необходимое следствие, и b) какое из следствий выбранного предложения приводит к доказываемому предложению.

Синтез называют поэтому не методом открытия новых истин, а методом их изложения.

Впрочем и при самом изложении теорем методом синтетическим является неудобство в том отношении, что не видно, почему за исходную истину в цепи доказательств выбрано то, а не другое предложение, то, а не другое его следствие.

Примером синтетического способа доказательства может послужить следующая теорема.

Теорема. Сумма углов треугольника равна двум прямым.

Дан треугольник ABC (черт. 224).

Требуется доказать, что A + B + C = 2d.

Теорема о сумме углов треугольника

Доказательство. Проведем прямую DE параллельную AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно,

то, заменяя в предыдущем равенстве углы α и γ равными им углами, имеем:

A + B + C = 2d (ЧТД).

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, лежащих по одну сторону прямой.

Она поставлена в связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною.

Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Анализ есть способ обратный синтезу. В анализе цепь рассуждений начинается доказываемой теоремой и оканчивается какой-нибудь другой уже известной истиной.

Анализ является в двух видах. От доказываемого предложения мы можем перейти к предложению, служащему его ближайшим основанием или его ближайшим следствием.

Переходя от данного предложения к предложению, служащему его ближайшим основанием, мы смотрим на данное предложение как на необходимое следствие.

Переходя от данного предложения к его ближайшему следствию, мы смотрим на данное предложение как на основание для цепи умозаключений.

Первый способ анализа. Совершая анализ переходом к основанию, отыскивают то первое ближайшее предложение, из которого данное вытекает как необходимое следствие. Если это предложение было прежде доказано, то доказано и данное предложение, если же нет, то отыскивают второе предложение, служащее основанием для первого.

Такой переход к основанию следует продолжать до тех пор, пока не дойдем до предложения вполне доказанного. Данное предложение явится как необходимое следствие последнего доказанного предложения.

Обозначая каждое предложение буквой и ставя ее впереди или позади другой, смотря по тому, будет ли оно служить основанием или следствием другого предложения, мы схематически можем этот прием анализа выразить в виде

где M есть данное предложение, L его ближайшее основание, а H предложение, вполне доказанное. Если верно предложение H, то верно предложение K; если верно K, то верно L; если верно L, то верно и M.

Второй способ анализа состоит в переходе от данного предложения к его следствию. Этот прием применяют чаще, потому что легче находить необходимое следствие, нежели отыскивать основание какой-нибудь истины. По этому способу выводят из данного предложения ту теорему, которая служит его ближайшим следствием. Если это следствие есть предложение прежде доказанное, то на нем и останавливаются; если же нет, переходят к следующему ближайшему следствию и вообще продолжают такой последовательный вывод следствий до тех пор, пока не дойдут до предложения, вполне доказанного.

Если последнее предложение не верно, то и данное не верно, ибо неверное следствие нельзя получить из верного предложения.

Если же последнее предложение верно, то для убеждения в верности данного предложения требуется, чтобы были соблюдены некоторые условия.

Схематически этот прием анализа можно представить в виде

M — N — O — P — Q — R — S

где M данное предложение, N предложение, служащее его ближайшим следствием, а S то последнее предложение, в справедливости которого мы вполне убеждены.

Из двух предложений R и S, стоящих в такой связи, что если справедливо R, то справедливо и предложение S, мы, как известно, не всегда можем обратно заключать, что если справедливо S, то справедливо и предложение R.

Чтобы последнее заключение имело место, требуется, чтобы теоремы R и S были взаимно-обратными предложениями.

Итак, для того, чтобы убедиться, что теоремы R и S стоят в такой связи, что она удовлетворяет схеме R — S и схеме S — R, требуется доказать, что предложения R и S взаимно-обратны.

Таким образом, чтобы можно было по верности последнего предложения S заключить о верности данного предложения M, требуется доказать, что каждые два рядом стоящие предложения R и S, P и R, O и P, N и O, M и N удовлетворяют закону обратимости.

Если это доказано, то цепь предложений можно обратить, и рядом со схемой M — N — O — P — Q — R — S справедлива и схема

S — R — Q — P — O — N — M

по которой мы имеем право заключить, что если справедливо предложение S, то справедливо и предложение M.

Так как затруднительно всякий раз доказывать обратимость двух предложений, то этого избегают, соединяя способ аналитический с синтетическим. После того, как из предложения M выведено предложение S как его следствие, смотрят, нельзя ли обратно вывести предложение M как необходимое следствие предложения S.

Если синтез есть способ, называемый дедукцией или выводом, то анализ можно назвать редукцией (приведение, наводка).

Примером аналитического способа доказательства может послужить следующая теорема.

Теорема. Диагонали параллелограмма пересекаются пополам.

Доказательство. Если диагонали пересекаются пополам, то треугольники AOB и DOC равны (черт. 225). Равенство же треугольников AOB и DOC вытекает из того, что AB = CD как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ как накрест-лежащие углы.

Доказательство теоремы аналитическим способом

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до предложения уже доказанного.

Сравнение синтеза с анализом. Способ аналитический вернее ведет к доказательству данной теоремы, ибо от данной теоремы легче переходить к его ближайшему основанию или следствию.

Хотя анализ лучше синтеза объясняет, почему выбран тот или другой путь для доказательства теоремы, однако неопределенность при доказательствах не устраняется вполне в том смысле, что при последовательных заменах одного предложения другим, мы не всегда можем дойти до предложения нам известного, ибо иногда не видно, какое из следствий или какое из оснований данного предложения нужно выбрать для того, чтобы его доказать. Затруднения увеличиваются еще больше, когда приходится для доказательства проводить новые вспомогательные прямые. Иногда трудно дать верные указания, какие из них облегчают доказательство данной теоремы.

Анализ, как и все логические приемы, только облегчает и помогает находить доказательство данного предложения, но не всегда необходимо ведет к самому доказательству.

Кроме этих прямых существует непрямой способ доказательства, известный под именем доказательства от противного или способа приведения к нелепости.

Способ доказательства от противного состоит в том, что для доказательства данного предложения убеждают в невозможности предположения противоположного.

На этом основании это доказательство называется доказательством от противного. Оно достигает своей цели всякий раз, когда из двух предложений, данного и противоположного, одно непременно имеет место.

В этом случае для доказательства данного, допустив противоположное предложение, выводят из него такие следствия, которые противоречат аксиомам или теоремам, уже доказанным. Если одно из следствий этого предложения ложно, то и противоположное предложение ложно, а следовательно данное предложение справедливо.

Этот прием часто применяют для доказательства теорем обратных или противоположных данным.

Не трудно заметить, что этот способ есть второй способ анализа, в котором от данного предложения последовательно переходят к его следствиям.

Примером применения такого способа может послужить приведенное выше доказательство теоремы: против равных углов в треугольнике лежат равные стороны (теорема 26).

В геометрии также применяют способы, зависящие от самого содержания геометрических истин. Геометрические истины относятся к геометрическим протяжениям. Эти протяжения обладают определенными свойствами, подлежащим внешним чувствам. Геометрическое протяжение может рассматриваться как целое, доступное наблюдению внешними чувствами. Убедительности доказательства содействует и самое чувственное созерцание. Обойтись без него в геометрии невозможно.

К числу приемов, имеющих место в геометрии, принадлежат: способ наложения, способ пропорциональности и способ пределов.

Способ наложения состоит в том, что одну геометрическую величину накладывают на другую. Этим способом убеждаются в равенстве или неравенстве геометрических протяжений, смотря по тому, совмещаются или не совмещаются ни при наложении.

Способ пропорциональности состоит в применении к геометрическим протяжениям свойств пропорций. Этот способ применяется при доказательстве теорем, относящихся к подобным фигурам и к пропорциональным отрезкам.

Способ пределов состоит в том, что вместо данных протяжений рассматривают свойства протяжений близких по своим свойствам к данному, и выводы, получаемые из рассмотрения одних, применяют к другим сходным протяжениям.

Способы решения геометрических задач

При решении геометрических задач синтез и анализ применяют точно так же как и при доказательстве теорем.

Решая задачу синтетически, берут такую другую задачу, которую умеют решить, потом из ее решения выводят решение следующей задачи, как ее необходимое следствие, и поступают так до тех пор, пока не доходят до решения данной задачи.

Синтетический метод решения задачи обладает всеми теми же недостатками, какими обладает и синтетический метод доказательства.

Поэтому чаще и успешнее для решения задач применяют анализ.

При решении задачи анализом заменяют данную задачу новой. Эту новую задачу будем называть заменяющей.

Если две задачи находятся в таком отношении, что условия второй есть необходимые следствия условий первой, то первую задачу будем называть начальной, а вторую — производной.

При анализе существуют два способа.

Первый способ. Заменяющую задачу выбирают так, чтобы условия данной задачи вытекали как необходимое следствие условий новой заменяющей задачи, т. е. по нашей терминологии от данной задачи переходят к первой начальной задаче. Если решение этой задачи известно, то решение данной является как необходимое следствие решения начальной задачи. Если же ее решение неизвестно, то от нее переходят ко второй, третьей начальной задаче и продолжают так поступать до тех пор, пока не получат задачу, решение которой известно.

Решив эту последнюю задачу, вместе с этим последовательно доходят и до решения данной задачи.

Второй способ. Можно переходить от данной задачи к такой другой, условия которой являются следствием условий данной, т. е. от данной задачи переходят к ее производной.

Заменяя таким образом последовательно одну задачу другой ее производной, мы можем дойти до задачи, решение которой уже известно. Решение этой задачи дает иногда возможность решить и данную задачу.

Такой переход от данной задачи к ее производной применяют чаще, ибо переходить к следствию легче, нежели подыскивать основание для какой-нибудь истины.

В этом частном случае анализа обыкновенно полагают, что задача решена, и из этого предположения выводят соотношения, дающие возможность решить данную задачу.

При переходе от данной задачи к ее заменяющей весьма важно обращать внимание на то, будут ли две задачи обладать свойством взаимной обратимости. Эта взаимность в условиях двух задач является тогда, когда одна задача, будучи начальной для другой, может быть в то же время и ее производной; иначе когда две задачи находятся в таком отношении, что условия одной могут быть и необходимыми следствиями другой и наоборот.

Если две задачи, данная и новая, обладают такими свойствами, то новая задача вполне заменяет данную. В этом случае все решения одной будут и решениями другой.

Если же условия двух задач не обладают свойствами взаимной обратимости, то, заменяя данную задачу новой, мы можем найти или лишние решения или иметь некоторые из решений потерянными.

Если заменяющая задача будет производной для данной, то мы можем найти некоторые лишние решения; если же она будет начальной для данной, то мы можем найти некоторые решения потерянными.

Так как чаще от данной задачи переходят к задаче производной, то чаще приходится получать решения лишние.

Чтобы отделить лишние решения и отыскать потерянные, поверяют все найденные решения.

Поверка есть способ отделения посторонних (лишних) решений. Она дополняет анализ.

Аналитическое решение задачи указывает на то построение, которое нужно сделать для решения задачи. Совершая это построение, поступают при решении задачи способом обратным анализу, т. е. прибегают к синтетическому способу. Этот синтетический способ часто может заменить и самую поверку найденных решений.

Совместное применение синтеза и анализа дает средство избегнуть тех ошибок, которые могут получиться при применении только одного из этих методов решения.

Решим одну и ту же задачу синтетически и аналитически. Для примера может послужить следующая задача.

Задача. Разделить данный отрезок AB в крайнем и среднем отношении.

Решение. Восставим из конца отрезка AB перпендикуляр BO равный половине AB (черт. 226). Из центра O опишем окружность радиусом BO, соединим центр O с точкой A и отложим на отрезке AB отрезок AC равный AD, тогда отрезок AC или AD будет искомый.

Задача на разделение отрезка

Доказательство. Прямая AB — касательная к окружности, следовательно

(AE — AB)/AB = (AB — AD)/AD

Так как DE = AB и AD = AC, то в предыдущей пропорции имеем:

AE — AB = AE — DE = AD = AC
AB — AD = AB — AC = BC

откуда имеем пропорцию

Это решение синтетическое. В нем мы отправляемся от известной теоремы о свойствах касательной и решение данной задачи вытекало как необходимое следствие этой теоремы.

Решение аналитическое. Допустим, что задача решена, а следовательно и отрезок AC найден, тогда

(AB + AC)/AB = (AC + CB)/AC

(AB + AC)/AB = AB/AC (2).

Из последней пропорции видно, что AB есть касательная, AB + AC пересекающаяся, AC ее внешний и AB внутренний отрезок.

Отсюда вытекает и само построение. Нужно из конца B восставить перпендикуляр равный ½AB, провести окружность, соединить O с A и отложить на отрезке AB часть AC = AD.

В этом аналитическом решении мы данную задачу, удовлетворяющую условию (1), заменяем задачей, удовлетворяющей условию (2).

Условие (2) указывает и путь для решения самой задачи построением.

Обыкновенно, найдя решение задачи способом аналитическим, совершают построение, в котором, применяя способ рассуждений синтетический, доказывают, что это построение действительно разрешает задачу и этим доказательством заменяют поверку, имеющую в виду устранить посторонние решения.

В данном примере между задачами, удовлетворяющим условиям (1) и (2), существует полная обратимость, ибо из условий (1) вытекают условия (2) как необходимое следствие и наоборот, поэтому здесь нет ни потерянных, ни посторонних решений.

Исследование второстепенных и вспомогательных приемов решения задач еще не достигло в своей обработке полной и совершенной законченности. Мы пока устраняемся от их подробного рассмотрения.

Учимся доказывать теорему.

Усвоить содержание теорем (правил, формул, тождеств и т. д.), которые изучаются в школе, не так уж трудно. Для этого необходимо систематически пытаться понять смысл теоремы (правил, формул, тождеств и т. д., как можно чаще применять их при решении задач, при доказательстве других теорем. Такая работа, как показывает практика, приводит к непроизвольному усвоению их содержания, запоминанию их формулировок. Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или иной теоремы, которая была рассмотрена на уроке. Специально запоминать доказательство не нужно, нужно научиться самому доказывать теоремы. Доказательства теорем в учебнике следует рассматривать как образец (эталон) рассуждений при доказательстве какого-либо утверждения.

Что значит доказать теорему, что такое доказательство?

Доказательство в широком смысле — это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений.

Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело — это уже другой вопрос) . В жизни все время, каждодневно в общении с другими людьми, приходится доказывать те или иные мысли, утверждения, приходится убеждать в чем-то, т. е. доказывать.

Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательства в житейских условиях или в других науках тем, что оно совершается по возможности чисто дедуктивным способом (от латинского слова дедукция — выведение), т. е. выведением новой доказываемой мысли (утверждения, суждения) из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах мы для доказательства часто прибегаем к примерам, к опыту. Мы говорим: «Смотри» — и это может служить доказательством. В математике такой способ доказательства недопустим, ссылаться, например, на очевидные отношения, иллюстрируемые чертежом, не разрешается. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т. д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемую теорему к исходным определениям и принятым без доказательства аксиомам.

Следовательно, аксиомы служат не только для косвенного определения первичных понятий, но и в качестве оснований для доказательства всех теорем математики. Вот почему в числе аксиом встречаются и такие, которые указывают особые свойства понятий, имеющих логические определения. Так, например, параллельные прямые в курсе геометрии являются не первичным понятием, а определяемым. Однако одно из свойств параллельных прямых, а именно что через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной, мы вынуждены принять за аксиому, ибо, как было установлено великим русским геометром Н. И. Лобачевским (1792—1856), а также немецким математиком К. Ф. Гауссом (1777—1855) и венгерским математиком Я. Больяй (1802—1860), доказать это свойство параллельных прямых на основе лишь остальных аксиом геометрии невозможно.

Всякий шаг доказательства состоит из трех частей:

1) предложение (аксиома, теорема, определение), на основе которого производится этот шаг доказательства; это основание шага доказательства называется посылкой или аргументом;

2) логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или к ранее полученным следствиям;

3) логическое следствие применения посылки к условиям или ранее полученным следствиям.

В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать. Покажем процесс доказательства на примере такой теоремы: «Диагонали прямоугольника равны».

Прямоугольник

В этой теореме нам дан произвольный (любой) прямоугольник,Для того чтобы легче было рассуждать в процессе доказательства, поступают следующим образом. Начертим вполне определенный прямоугольник ABCD, но при доказательстве не будем использовать какие-либо частные особенности этого прямоугольника (например, что его сторона АВ примерно в 2 раза больше стороны AD и т. д.). Поэтому наши рассуждения относительно этого определенного прямоугольника будут верны и для любого другого прямоугольника, т. е. они будут иметь общий характер для всех прямоугольников.

Проведем диагонали АС и BD. Рассмотрим полученные треугольники ABC и ABD. У этих треугольников углы ABC и BAD равны как прямые, катет АВ — общий, а катеты ВС и AD равны как противоположные стороны прямоугольника. Следовательно, эти треугольники равны. Отсюда следует, что стороны АС и BD также равны, что и требовалось доказать.

Все доказательство этой теоремы можно изобразить в виде следующей схемы.

№ шага Посылки (аргументы) Условия Следствия
1. Определение: прямоугольник — это четырехугольугольник, у которого все углы прямые ABCD — прямоугольник A — прямой
B> — прямой.
2. Теорема: Прямые углы равны. A — прямой
B — прямой.
A =B.
3. Теорема: Противоположные стороны прямоугольника равны. ABCD — прямоугольник BC=AD
4. Первый признак равенства двух треугольников. ВС=AD, AB=AB,B =A ABC=BAD.
5. Определение равенства треугольников. ABC =BAD,
AC и BD соответственные стороны
AC=BD.

Самое трудное в доказательстве — это найти последовательность посылок (аксиом, теорем, определений), применяя которые к условиям теоремы или промежуточным результатам (следствиям) в конечном итоге можно получить нужное следствие — доказываемое положение.

Какими правилами нужно руководствоваться при поиске этой последовательности? Очевидно, что эти правила не могут носить обязательный характер, они лишь указывают возможные пути поиска. Поэтому они называются эвристическими правилами или просто эвристиками (от греческого слова эврика — нахожу, нашел). Многие выдающиеся математики, такие, как Папп (древнегреческий математик, живший в III в.), Блез Паскаль (1623—1662), Рене Декарт (1596—1650), Жак Адамар (1865—1963), Дьердж Пойя (1887) и многие другие, занимались разработкой эвристик для поиска доказательства теорем и решения задач. Вот некоторые эвристические правила, которые полезно помнить:

1.Полезно заменять названия объектов, о которых идет речь в теореме (задаче), их определениями или признаками.

Например, в рассмотренной выше теореме шла речь о прямоугольнике, и мы для доказательства использовали определение прямоугольника.

2.Если можно, то нужно доказываемое положение раздробить на части и доказывать каждую часть в отдельности.

Так, например, доказательство теоремы: «Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм» — можно разделить на две части: сначала доказать, что одна пара противоположных сторон данного четырехугольника параллельна, а затем доказать, что и вторая пара противоположных сторон также параллельна.

Так следует поступать всегда, когда есть возможность доказываемое утверждение разбить на несколько частей более простых утверждений.

3.В поисках доказательства теоремы полезно идти с двух сторон: от условий теоремы к заключению и от заключения к условиям.

Например, нужно доказать такую теорему: «Если некоторая последовательность такова, что любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то эта последовательность — арифметическая прогрессия».

Пойдем от условия теоремы. Что нам дано? Дано, что каждый член последовательности, начиная со второго (обозначим его an, где n ³ 2), есть среднее арифметическое предшествующего и последующего членов, т.

an-1 и an+1. Значит, верно такое равенство:
(1)

Теперь пойдем от заключения. А что нам нужно доказать? Нужно доказать, что эта последовательность — арифметическая прогрессия. А какая последовательность называется арифметической прогрессией? Вспоминаем определение:

an = an-1 + d, где n2, d — постоянное число. (2)

Сопоставляем данное нам условие (1) с заключением (2). Чтобы условие приняло форму заключения, надо преобразовать так:

Левая и правая части (4) обозначают одно и то же, а именно разность между двумя последовательными членами заданной последовательности. Если в равенстве (4) п давать последовательно значения 2, 3 и т. д., то получим: а2 —a1 = а3 — a2, затем а3 — a2 = a4 — a3 и т. д. Следовательно, все эти разности равны между собой, а это значит, что разность ап — ап-1 есть постоянное число, которое можно обозначить буквой, например, буквой d:

Отсюда получаем: an = an-1 + d, а это значит, что согласно определению (2) данная последовательность есть арифметическая прогрессия, что нам и надо было доказать.

Эту эвристику можно и так сформулировать: надо стараться сблизить условие и заключение теоремы, преобразуя их или заменяя их следствиями.

Известен и ряд более частных эвристических правил, которые применяются при поиске лишь некоторых теорем. Например, такая эвристика: для того чтобы доказать равенство каких-либо отрезков, надо найти или построить фигуры, соответствующими сторонами которых являются эти отрезки; если фигуры окажутся равными, то будут равны и соответствующие отрезки.

Изучая теоремы, нужно не просто запоминать их доказательство, а каждый раз думать и устанавливать, какими методами они доказываются, какими эвристическими правилами руководствовались при нахождении этих доказательств, как догадались (додумались) до этих доказательств.

В ряде случаев для доказательства теорем используется особый прием, называемый «доказательством от противного» или «приведением к нелепости».

Сущность этого приема заключается в том, что предполагают несправедливость (ложность) заключения данной теоремы и доказывают, что такое предположение приводит к противоречию с условием или с ранее доказанными теоремами или аксиомами. А так как любое утверждение может быть либо верным, либо неверным (ничего другого быть не может), то полученное противоречие показывает, что допущение о ложности заключения теоремы неверно и, следовательно, заключение верно, тем самым теорема доказана.

Теорема. Две прямые, порознь параллельные третьей, параллельны между собой.

Дано: а||с, b||с.
Доказать: а||b.

Докажем эту теорему методом от противного. Допустим, что заключение теомы неверно, т. е. прямая а непараллельна прямой b. Тогда они пересекаются в некоторой точке М. А так как по условию каждая из этих прямых параллельна прямой с, то получается, что через точку М проведены две прямые а и b, параллельные одной и той же прямой с. А мы знаем по аксиоме параллельности, что через точку вне прямой можно провести не более одной прямой, параллельной данной. Пришли к противоречию с аксиомой. Это показывает, что наше предположение о непараллельности прямых а и b неверно, следовательно, а||b, что и требовалось доказать.

Теорема. Среднее арифметическое двух положительных чисел не меньше

Эту теорему можно так записать:

Ее можно доказать как прямым способом, так и способом от противного. Докажем ее способом от противного.

Для этого допустим, что она неверна, т. е. среднее арифметическое меньше среднего геометрического двух положительных чисел:; (2)

Умножим обе части (2) на 2 и возведем их в квадрат, получим: a 2 + 2ab + b 2

В результате получили явную нелепость: квадрат некоторого числа (а — b) отрицателен, чего быть не может. Следовательно, предположение о неверности теоремы привело к противоречию, что доказывает справедливость теоремы.

Таким образом, доказательство от противного некоторой теоремы состоит в том, что мы делаем допущение о неверности заключения теоремы. Затем делаем ряд логических умозаключений на основе этого допущения, в результате которых приходим к явно нелепому положению (к противоречию с условием или ранее доказанными теоремами, аксиомами). Далее рассуждаем так: если бы наше предположение было бы верным, то мы могли бы прийти лишь к верному выводу, а так как мы пришли к неверному выводу, то это означает, что наше предположение было ложным, следовательно, тем самым мы убедились, что заключение теоремы верно.

Заметим, что если в результате рассуждений мы не получили бы нелепости (противоречия), то это еще не означало бы, что предположение верно. Иными словами, если исходить из верности (справедливости) заключения теоремы и из этого предположения получить верное (очевидное) следствие, то это еще не значит, что предположение верно: может случиться, что исходная теорема как раз неверна.

На этом построены многие софизмы (умышленно ложно построенные умозаключения, кажущиеся лишь правильными), этим объясняются многие ошибки, допускаемые, при решении задач.

Рассмотрим, например, такое равенство: а — b = b — a (1), где а и b — произвольные числа. Допустим, что (1) верно, тогда возвысим обе части (1) в квадрат, получим:

a 2 — 2ab + b 2 = b 2 — 2ab + a 2

Перенеся все члены в одну сторону и сделав приведение подобных, придем к совершенно верному равенству: 0 = 0. Но отсюда нельзя делать вывод, что и исходное равенство (1) верно. Если бы мы такой вывод сделали, то пришли бы к такому софизму: 2а = 2b или а = b, т. е. любые произвольные числа равны между собой. Ошибка состоит в том, что из равенства квадратов двух чисел не следует равенство самих этих чисел. Например, (-2) 2 = 2 2 , но -22.

Вот пример ошибочного решения задачи.

Задача. Решить уравнение 3+ x + 2 = 0 (1).

Допустим, что уравнение (1) имеет решение и, следовательно, равенство (1) верно. Тогда получим: З= — х — 2. Возведем обе части равенства в квадрат: 9х = х 2 + 4х + 4 или х 2 —5x + 4 = 0, отсюда x1 =4, х2=1. Можно ли найденные значения х считать корнями уравнения (1)? Некоторые ученики отвечают на этот вопрос утвердительно, ибо ведь все преобразования уравнения верные. И все же ни одно из найденных значений х не является корнем (1). Это подтверждает проверка. Подставляя найденные значения х в (1), получаем явно нелепые равенства: 12 = 0 и 6 = 0.

А как все же решить это уравнение. Заметим, что выражение в левой части уравнения имеет смысл, если x0. Тогда левая часть уравнения при любых допустимых значениях х принимает только положительные значения и ни как не может быть равной 0, следовательно, данное уравнение корней не имеет.

Таким образом вы должны учиться доказывать теоремы (формулы, тождества и т. д.), овладевать общими способами поиска доказательства теорем.

Научный форум dxdy

Как научиться доказывать теоремы? Вот, например, беру я учебник математического анализа, читаю условие теоремы, доказательство не смотрю, а в голову ничего не приходит. Что мне делать тогда? Как этому научиться? Просто складывается ощущение, что какой-то подгон есть в математическом анализе, когда доказательство ведется на эпсилон-дельта языке.

Re: Как научиться доказывать теоремы?
11.01.2020, 12:23

Последний раз редактировалось se-sss 11.01.2020, 12:30, всего редактировалось 2 раз(а).

Хороший вопрос, кстати.
Мне кажется, это как в шахматах, один видит на один свой ход вперёд, другой имеет чувство, у чему этот ход приведёт через 10 ходов.
Тренироваться можно, особенно знание всяких методов уже изобретённых полезно, но радикально способности не изменятся.

Gladiator1995 в сообщении #1434517 писал(а):
что какой-то подгон есть в математическом анализе

Понятно, что есть. В книге — это не «живое рассуждение» обычно, а особенно в книгах по математике. Автор уже знает, чего он хочет и к чему он хочет прийти и каким способом.
Зато «живое рассуждение» можно встретить довольно часто на семинарских занятиях, когда преподаватель со студентами решают задачи.

Re: Как научиться доказывать теоремы?
11.01.2020, 14:44
Надо хорошо знать определения. Если речь о мат.анализе, берите Демидович и решайте подряд.
Re: Как научиться доказывать теоремы?
11.01.2020, 14:44
Gladiator1995 в сообщении #1434517 писал(а):
Как научиться доказывать теоремы?

А разве не этому учат в школе? В моё время так и было. Дан набор аксиом. Дана теорема. А дальше начинается творческий поиск и рассмотрение аксиом применительно к условиям теоремы. Оно как-то само собой происходит, и чем больше в этом деле опыта — тем легче.
Но это не каждому дано. Кому-то математика заходит легко и с удовольствием, а кому-то хуже горькой редьки. Зато этот кто-то может рисует замечательно или песни пишет душевные.

Re: Как научиться доказывать теоремы?
11.01.2020, 15:39

В разных разделах математики разные типичные приёмы рассуждений и доказательств. Так что стоит смотреть на другие доказательства в этом же разделе, и подражать им.

«Ощущение подгона» в математическом анализе есть, и неспроста, поскольку в конкретных случаях «дельта по эпсилон» можно подобрать, если заранее знаешь ответ (например, производную от функции). Но в общем случае эта возможность просто постулируется , и из этого постулированного свойства выводятся, как следствие, другие свойства. К этому надо привыкнуть: к стилю рассуждений «допустим, что. «.

Re: Как научиться доказывать теоремы?
11.01.2020, 17:03
Munin в сообщении #1434562 писал(а):
К этому надо привыкнуть: к стилю рассуждений «допустим, что. «.

Так ведь один из мощных методов же. Допустили, пошли по ниточке идеи допущения, упёрлись в стену или в конфуз — значит, не то допустили. Возвращаемся к печке, пробуем допустить что-нибудь другое.

Re: Как научиться доказывать теоремы?
11.01.2020, 19:42
Gladiator1995 в сообщении #1434517 писал(а):
Как научиться доказывать теоремы?
Для начала — методом грубой силы и случайного перебора.
Re: Как научиться доказывать теоремы?
11.01.2020, 20:40

Доказать это значить убедить себя в правильности утверждения. Вы для начала должны попробовать выяснить, является ли утверждение истинным, как можете. А потом если глянете формальное доказательство, то вы найдете много схожих моментов с вашими

Re: Как научиться доказывать теоремы?
26.02.2020, 02:57

Последний раз редактировалось bondkim137 26.02.2020, 02:58, всего редактировалось 1 раз.

Padawan в сообщении #1434551 писал(а):
берите Демидович и решайте подряд
Демидовича подряд хорошая мотивация нужна. Например, крестик получить и бояться гробика (c).
Re: Как научиться доказывать теоремы?
26.02.2020, 19:32
Gladiator1995 в сообщении #1434517 писал(а):

Вот, например, беру я учебник математического анализа, читаю условие теоремы, доказательство не смотрю, а в голову ничего не приходит.

Это неудивительно. Теоремы в матане не такие простые, чтобы средний студент мог их просто так взять и доказать без подсказок.

Есть сборники задач на доказательство, специально рассчитанные на то, чтобы тренировать этот навык.

Anton_Peplov в сообщении #1215244 писал(а):

По алгебре есть задачник Кострикина. Около матана есть Очан. Сборник задач и теорем по теории функций действительного переменного — там задачи про множества, функции, непрерывность. Сборников задач на доказательство по дифференциальному и интегральному исчислению не знаю, сам бы не отказался.

Демидович — это сборник задач в основном на навыки преобразований (найти предел, интеграл, производную и т.д.). Насколько они полезны для навыка доказывания, мне трудно судить.

Re: Как научиться доказывать теоремы?
26.02.2020, 20:23

Формулировка теоремы, которая заведомо на 99.999% правильная, позволяет сэкономить 99.99% усилий на её вывод, плюс заданы аксиоматика, определения, предыдущие теоремы (и всё задано в довольно перевариваемом виде), остаётся только из исходной точки добраться до нужной теоремы. Плюс, известно, что доказательство короткое, это тоже сильно помогает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *