Как работает АЭС?
Атомная электростанция — комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.
На АЭС происходит три взаимных преобразования форм энергии
переходит в тепловую
переходит в механическую
преобразуется в электрическую
1. Ядерная энергия переходит в тепловую
Основой станции является реактор — конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.
2. Тепловая энергия переходит в механическую
Тепло отводится из активной зоны реактора теплоносителем — жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.
3. Механическая энергия преобразуется в электрическую
Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.
Из чего состоит АЭС?
Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).
Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.
Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.
На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.
Какие бывают АЭС?
В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).
АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
В настоящее время в России действует 4 АЭС с одноконтурными реакторами
АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ
Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
В настоящее время в России действует 6 АЭС с двухконтурными реакторами
АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
В настоящее время в России действует 1 АЭС с трехконтурным реактором
ПРОДУКЦИЯ И УСЛУГИ
Электростанции используются для выработки электрического тока, который необходим для нашего существования. Электричество применяется не только в бытовых, но и в промышленных областях. Соответственно, атомная электростанция так же вырабатывает энергию.
В связи с тем, что для выработки любой энергии нужно топливо, по сравнению с другими электрическими станциями, атомная — самая экономичная. Как и на любом предприятии, на АЭС необходимо соблюдать технику безопасности, только в данном случае она имеет повышенные требования, так как в случае аварии получается огромный гибельный эффект, поглощающий большое пространство.
Принцип работы атомной электростанции вы видите на схеме. Нужен агрегат нагревающий воду и превращающий в пар, то есть пар как был, так и остается движущей силой, вода нагревается от ядерного реактора в котором под действием движения атомов происходит выделение энергии, в связи с чем происходит мощный нагрев, пар, как движущий элемент вращает турбину, которая соединена с генератором, который вырабатывает электричество.
© 2009–2023 АО «Атомэнергомаш». Атомное и энергетическое машиностроение.
Этот сайт использует cookies. Продолжая работу с сайтом, Вы выражаете своё согласие на обработку Ваших персональных данных с использованием интернет-сервиса Яндекс Метрика. Отключить cookies Вы можете в настройках своего браузера. Подробнее
Как работает АЭС
Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. К примеру, по подсчетам экспертов, атомные станции в Европе ежегодно позволяют избежать эмиссии около 700 миллионов тонн СО2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу около 210 млн тонн углекислого газа. Таким образом, ядерная энергетика, являясь мощным базовым источником электрогенерации, вносит свой вклад в декарбонизацию.
КАК РАБОТАЕТ АЭС
Атомная электростанция – это комплекс необходимых зданий, систем, устройств, оборудования и сооружений, предназначенных для производства электроэнергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.
На АЭС происходит три взаимных преобразования форм энергии:
- ядерная энергия переходит в тепловую,
- тепловая энергия переходит в механическую,
- механическая энергия преобразуется в электрическую.
Основой атомной станции является реактор, который располагается в реакторном зале, в основном корпусе. Это конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.
Основным элементом реактора является активная зона. Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.
Тепло отводится из активной зоны реактора теплоносителем – жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе. Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.
Парогенератор и сама турбина располагаются в турбинном зале.
На территории площадки также обычно находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями, прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.
Также в технологической цепочке есть конденсаторы и высоковольтные линии электропередач (ЛЭП), уходящие за пределы площадки станции.
КАКИЕ АЭС БЫВАЮТ
В зависимости от типа реактора на атомной станции могут быть 1, 2 или 3 контура теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
Репортаж с БелАЭС: как работает станция в преддверии включения в сеть второго энергоблока
Атомная энергетика обеспечивает около 10% производимой в мире электроэнергии. АЭС эксплуатируются в 32 странах. Еще 30 государств заявили о готовности к строительству. Беларусь оценила перспективы и сделала ставку на атомную энергетику еще в 2008 году — тогда было принято решение о строительстве БелАЭС. Первый энергоблок введен в промышленную эксплуатацию 10 июня 2021 года. Теперь на подходе второй. Строительно-монтажные работы почти завершены. Пробное включение в сеть ожидается в марте-апреле, ввод в промышленную эксплуатацию — во втором полугодии. Представители белорусских и российских СМИ посетили БелАЭС и понаблюдали за работой станции в преддверии нового этапа.
С момента включения первого энергоблока БелАЭС в объединенную энергосистему (3 ноября 2020 года) выработано 11,7 млрд кВт.ч электроэнергии. Это позволило заместить около 3,2 млрд куб.м природного газа. С вводом второго энергоблока БелАЭС будет ежегодно производить около 18,5 млрд кВт.ч электроэнергии, что позволит удовлетворить около 40% внутренних потребностей страны.
Журналистам удалось побывать в самом эпицентре выработки электроэнергии — турбинном зале первого энергоблока. В этом здании расположена паровая турбина мощностью 1200 МВт. Частота вращения — 3 тыс. оборотов в минуту, общая масса без трубопроводов и конденсатора — 2,5 тыс. т, длина агрегата — порядка 75 м. «Тут происходит процесс преобразования тепловой энергии в кинетическую энергию, а затем в электроэнергию. На нашей станции обеспечена полная безопасность процесса, применено надежное, высокотехнологичное, качественное оборудование», — подчеркнул начальник турбинного цеха Андрей Лазовский.
На БелАЭС приняты меры для того, чтобы гарантировать безопасность энергоблока и на случай аварийного отключения электроснабжения. Создана резервная станция, в которой находятся четыре дизель-генераторные установки. «Каждая установка может давать 6,3 МВт мощности, чего хватает для обеспечения собственных нужд одного блока. Но установок четыре, то есть у нас четырехканальная система безопасности. В случае обесточения все четыре дизеля запускаются, начинают работать, набирают полную мощность и обеспечивают энергоблок электроснабжением. В первую очередь это необходимо для того, чтобы поддержать в функциональном состоянии все технологические системы, реакторные установки, вентиляционные системы», — отметил заместитель начальника электроцеха Владимир Тащян.
По его словам, ежемесячно каждый дизель прокручивается на холостом ходу, параллельно проводится автоматический ступенчатый запуск всех механизмов. Специалисты имитируют отключение электроснабжения, проводят испытания.
После аварии на АЭС «Фукусима-1» на атомных станциях применяются еще более жесткие меры безопасности. «Для каждого энергоблока у нас реализована передвижная дизель-генераторная установка, которая на случай запроектной аварии может обеспечить в первую очередь пассивный отвод тепла от реакторной установки. На «Фукусиме-1″ после того, как произошло землетрясение и цунами накрыло резервную дизель-генераторную станцию, электроснабжение брать было неоткуда. У нас такого не произойдет», — обратил внимание Владимир Тащян.
По его словам, дизель-генераторные установки для второго энергоблока готовы задолго до его ввода. Это одно из условий, позволяющих выполнять программу поэтапной подготовки к пуску.
Также представители СМИ побывали на центральном пункте управления. Здесь выполняется контроль параметров и управление оборудованием комплектного распределительного устройства (КРУЭ 330 кВ), схемой выдачи мощности с энергоблоков, а также связь с энергосистемой Беларуси.
Журналистам показали башенные испарительные градирни, которые предназначены для охлаждения большого количества воды посредством направленного потока воздуха. Частью системы охлаждения являются и брызгальные бассейны, которые также продемонстрировали посетителям.
«Разбрызгивающие устройства нужны для эффективного отвода тепла от вспомогательных систем, обслуживающих реакторное отделение. На каждый блок приходится четыре канала для охлаждения воды, которые независимы друг от друга, физически разделены. Это сделано для того, чтобы обеспечить бесперебойную подачу воды в случае необходимости. Объем каждого канала — 24 тыс. кубометров. Сейчас, например, в бассейны поступает вода температурой около 20 градусов тепла и охлаждается до плюс 10-11», — рассказал заместитель начальника цеха обеспечивающих систем Василий Курбан.
По его словам, приняты все меры для надежной работы системы охлаждения. «Одного канала достаточно для отвода тепла, он может независимо работать в течение восьми суток, а у нас каналов четыре», — добавил он.
Показали журналистам и центральные ремонтные мастерские — станочного оборудования, для сварочных работ, по ремонту трубопроводной арматуры. Есть мастерские и непосредственно на энергоблоках, куда ограничен доступ: там выполняются работы, связанные с оборудованием реакторного отделения.
Зачем атомной станции нужны собственные мастерские? Конечно, для ремонта и технического обслуживания. Это необходимо для эффективной работы всех систем и оборудования.
На БелАЭС предусмотрено проведение планово-предупредительных ремонтов. Один раз в год нужно остановить энергоблок для частичной перегрузки топлива и выполнения плановых регламентных работ по техническому обслуживанию и ремонту. «Это штатная операция, которая выполняется на любой атомной станции в мире, без этого невозможна ее надежная и безопасная эксплуатация», — подчеркнул заместитель главного инженера по ремонту БелАЭС Сергей Быльчинский.
В прошлом году был выполнен первый для БелАЭС планово-предупредительный ремонт. Он выполнялся силами ремонтного персонала как самой станции, так и подрядных организаций. «Нашей концепцией предусмотрено привлечение подрядных организаций на реакторное и турбинное отделение. В частности, на реакторном отделении выступал генподрядчиком «Русатом Сервис»- единый интегратор концерна «Росэнергоатом» на зарубежных площадках. А ремонт турбинного отделения проходил силами «Белэнергоремналадки», которая является крупнейшей организацией по проведению ремонта энергетического оборудования на объектах белорусской энергосистемы», — обратил внимание Сергей Быльчинский.
«Негативные заявления в информационном поле о нашей станции во время проведения планово-предупредительного ремонта были необоснованными. Здесь работают профессионалы, приглашаются компетентные специалисты, обладающие опытом работы на действующих атомных станциях. Ремонт был выполнен на высоком уровне, обеспечен хороший задел на дальнейшую надежную и безопасную эксплуатацию Белорусской атомной станции», — подчеркнул заместитель главного инженера по ремонту БелАЭС.
Заместитель министра энергетики Михаил Михадюк сделал акцент на том, что Белорусская АЭС рассчитана и спроектирована с учетом определенного набора внешних факторов — землетрясений, наводнений, падения самолета и прочего. «Здесь наш проект отвечает самым современным требованиям. Кроме того, проект БелАЭС был и остается самым безопасным по всем системам защиты», — отметил он. По его словам, пять из семи новых энергоблоков, которые начали строиться в прошлом году в мире, возводятся по проекту «АЭС-2006». Именно по нему и строилась Белорусская атомная электростанция. «Этот проект сертифицирован по условиям безопасности как в МАГАТЭ, так и в Европе. На данный момент он самый востребованный в мире. Сегодня по этому проекту строятся АЭС в Венгрии, Бангладеш, Египте», — добавил замминистра.
Первый энергоблок работает, и, конечно же, в стране ждут запуска второго. Как пояснил Михаил Михадюк, это долгий и сложный процесс. Сейчас идут пусконаладочные работы. После этого последует выход на минимально контролируемый уровень мощности реакторной установки. В марте-апреле планируется первое пробное включение в объединенную энергосистему. «Но первое включение в сеть не означает, что энергоблок не будет отключаться. В соответствии с программами мы должны поднимать до определенной мощности, проводить испытания, потом сбрасывать мощность до нуля и снова испытывать. Он включается на мощности реакторной установки 40-50 МВт, дальше целая серия испытаний, потом мощность поднимается до 75 МВт, опять все по новой, следующая планка — 90 МВт и так далее. Этот процесс займет не менее полугода. Для нас самое главное — обеспечить безопасную эксплуатацию энергоблока, ядерную и радиационную безопасность. Потому подходим к выполнению работ скрупулезно», — констатировал замминистра.
«После того, как мы выйдем на 100% мощности и проведем все положенные испытания, еще предстоит этап опытно-промышленной эксплуатации. И венцом всему будет подписание акта ввода в эксплуатацию. Ввод ожидается во втором полугодии», — поделился планами замглавы Минэнерго.
А что ждет атомную энергетику страны дальше? Возможен ли третий энергоблок или вторая АЭС? В Беларуси сейчас рассматривают перспективы, изучают вопрос. «Первый этап работы — прогноз потребления электроэнергии в стране на перспективу. Второй момент — насколько это будет вписываться в работу энергосистемы. Для этого Беларусь должна выйти на определенный уровень потребления электроэнергии», — отметил Михаил Михадюк.
Минэнерго ведет работу совместно с Минэкономики и НАН Беларуси. В ближайшее время планируется разработать технико-экономическое обоснование, чтобы принять окончательное решение.
фото Рамиля НАСИБУЛИНА,