Как проверить установлен ли kivy
Перейти к содержимому

Как проверить установлен ли kivy

  • автор:

How do you verify/check kivy version?

The version is printed in kivy’s default logger output, or you can get it in python with:

python -c "import kivy; print(kivy.__version__)" 

1,527 1 1 gold badge 14 14 silver badges 32 32 bronze badges
answered Dec 21, 2015 at 1:03
29.2k 4 4 gold badges 48 48 silver badges 61 61 bronze badges

kivy is not a python module on my system, so I can’t import it, and I don’t know what kivy’s default logger output is. Ah! I see. When I run: $ kivy my_kivy_prog.py , kivy prints a bunch of startup info to the screen, and that shows the kivy version. Thanks.

Dec 21, 2015 at 21:14

Here’s the logger output that shows the kivy version:

$ kivy my_kivy_prog.py [INFO ] [Logger ] Record log in /Applications/Kivy.app/Contents/Resources/.kivy/logs/kivy_15-12-20_0.txt [INFO ] [Kivy ] v1.9.0 [INFO ] [Python ] v2.7.6 (default, Sep 9 2014, 15:04:36) [GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] [INFO ] [Factory ] 173 symbols loaded [INFO ] [Image ] Providers: img_tex, img_imageio, img_dds, img_gif, img_sdl2 (img_pil, img_ffpyplayer ignored) [INFO ] [Text ] Provider: sdl2 [INFO ] [OSC ] using for socket [INFO ] [Window ] Provider: sdl2 [INFO ] [GL ] OpenGL version [INFO ] [GL ] OpenGL vendor [INFO ] [GL ] OpenGL renderer [INFO ] [GL ] OpenGL parsed version: 2, 1 [INFO ] [GL ] Shading version [INFO ] [GL ] Texture max size [INFO ] [GL ] Texture max units [INFO ] [Window ] auto add sdl2 input provider [INFO ] [Window ] virtual keyboard not allowed, single mode, not docked [INFO ] [Base ] Start application main loop 

You can see both the kivy version and the python version in there.

Написание змейки для Android на Kivy, Python

Если вы — питонист, и хотите начать разработу простых игр под андроид, вы должно быть уже загуглили «змейка на андроиде» и нашли это (Eng) или ее перевод (Рус). И я тоже так сделал. К сожалению, я нашел статью бесполезной по нескольким причинам:

Плохой код
  1. Использование «хвоста» и «головы» по отдельности. В этом нет необходимости, так как в змее голова — первая часть хвоста. Не стоит для этого всю змею делить на две части, для которых код пишется отдельно.
  2. Clock.schedule от self.update вызван из… self.update.
  3. Класс второго уровня (условно точка входа из первого класса) Playground объявлен в начале, но класс первого уровня SnakeApp объявлен в конце файла.
  4. Названия для направлений («up», «down», . ) вместо векторов ( (0, 1), (1, 0)… ).
  1. Динамичные объекты (к примеру, фрукт) прикреплены к файлу kv, так что вы не можете создать более одного яблока не переписав половину кода
  2. Чудная логика перемещения змеи вместо клетка-за-клеткой.
  3. 350 строк — слишком длинный код.
Статья неочевидна для новичков

Это мое ЛИЧНОЕ мнение. Более того, я не гарантирую, что моя статья будет более интересной и понятной. Но постараюсь, а еще гарантирую:

  1. Код будет коротким
  2. Змейка красивой (относительно)
  3. Туториал будет иметь поэтапное развитие
Результат не комильфо

Нет расстояния между клетками, чудной треугольник, дергающаяся змейка.

Знакомство

Первое приложение

Пожалуйста, удостовертесь в том, что уже установили Kivy (если нет, следуйте инструкциям) и запустите
buildozer init в папке проекта.

Запустим первую программу:

from kivy.app import App from kivy.uix.widget import Widget class WormApp(App): def build(self): return Widget() if __name__ == '__main__': WormApp().run() 

Мы создали виджет. Аналогично, мы можем создать кнопку или любой другой элемент графического интерфейса:

from kivy.app import App from kivy.uix.widget import Widget from kivy.uix.button import Button class WormApp(App): def build(self): self.but = Button() self.but.pos = (100, 100) self.but.size = (200, 200) self.but.text = "Hello, cruel world" self.form = Widget() self.form.add_widget(self.but) return self.form if __name__ == '__main__': WormApp().run() 

Ура! Поздравляю! Вы создали кнопку!

Файлы .kv

Однако, есть другой способ создавать такие элементы. Сначала объявим нашу форму:

from kivy.app import App from kivy.uix.widget import Widget from kivy.uix.button import Button class Form(Widget): def __init__(self): super().__init__() self.but1 = Button() self.but1.pos = (100, 100) self.add_widget(self.but1) class WormApp(App): def build(self): self.form = Form() return self.form if __name__ == '__main__': WormApp().run() 

Затем создаем «worm.kv» файл.

: but2: but_id Button: id: but_id pos: (200, 200) 

Что произошло? Мы создали еще одну кнопку и присвоим id but_id. Теперь but_id ассоциировано с but2 формы. Это означает, что мы можем обратиться к button с помощью but2:

class Form(Widget): def __init__(self): super().__init__() self.but1 = Button() self.but1.pos = (100, 100) self.add_widget(self.but1) # self.but2.text = "OH MY" 

Графика

Далее создадим графический элемент. Сначала объявим его в worm.kv:

: : canvas: Rectangle: size: self.size pos: self.pos 

Мы связали позицию прямоугольника с self.pos и его размер с self.size. Так что теперь эти свойства доступны из Cell, например, как только мы создаем клетку, мы можем менять ее размер и позицию:

class Cell(Widget): def __init__(self, x, y, size): super().__init__() self.size = (size, size) # Как можно заметить, мы можем поменять self.size который есть свойство "size" прямоугольника self.pos = (x, y) class Form(Widget): def __init__(self): super().__init__() self.cell = Cell(100, 100, 30) self.add_widget(self.cell) 

Окей, мы создали клетку.

Необходимые методы

Давайте попробуем двигать змею. Чтобы это сделать, мы можем добавить функцию Form.update и привязать к расписанию с помощью Clock.schedule.

from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock class Cell(Widget): def __init__(self, x, y, size): super().__init__() self.size = (size, size) self.pos = (x, y) class Form(Widget): def __init__(self): super().__init__() self.cell = Cell(100, 100, 30) self.add_widget(self.cell) def start(self): Clock.schedule_interval(self.update, 0.01) def update(self, _): self.cell.pos = (self.cell.pos[0] + 2, self.cell.pos[1] + 3) class WormApp(App): def build(self): self.form = Form() self.form.start() return self.form if __name__ == '__main__': WormApp().run() 

Клетка будет двигаться по форме. Как вы можете видеть, мы можем поставить таймер на любую функцию с помощью Clock.

Далее, создадим событие нажатия (touch event). Перепишем Form:

class Form(Widget): def __init__(self): super().__init__() self.cells = [] def start(self): Clock.schedule_interval(self.update, 0.01) def update(self, _): for cell in self.cells: cell.pos = (cell.pos[0] + 2, cell.pos[1] + 3) def on_touch_down(self, touch): cell = Cell(touch.x, touch.y, 30) self.add_widget(cell) self.cells.append(cell) 

Каждый touch_down создает клетку с координатами = (touch.x, touch.y) и размером = 30. Затем, мы добавим ее как виджет формы И в наш собственный массив (чтобы позднее обращаться к нему).

Теперь каждое нажатие на форму генерирует клетку.

Няшные настройки

Так как мы хотим сделать красивую змейку, мы должны логически разделить графическую и настоящую позиции.

Много причин делать это. Вся логика должна быть соединена с так называемой настоящей позицией, а вот графическая — есть результат настоящей. Например, если мы хотим сделать отступы, настоящая позиция будет (100, 100) пока графическая — (102, 102).

P. S. Мы бы этим не парились если бы имели дело с on_draw. Но теперь мы не обязаны перерисовать форму лапками.

Давайте изменим файл worm.kv:

: : canvas: Rectangle: size: self.graphical_size pos: self.graphical_pos 
. from kivy.properties import * . class Cell(Widget): graphical_size = ListProperty([1, 1]) graphical_pos = ListProperty([1, 1]) def __init__(self, x, y, size, margin=4): super().__init__() self.actual_size = (size, size) self.graphical_size = (size - margin, size - margin) self.margin = margin self.actual_pos = (x, y) self.graphical_pos_attach() def graphical_pos_attach(self): self.graphical_pos = (self.actual_pos[0] - self.graphical_size[0] / 2, self.actual_pos[1] - self.graphical_size[1] / 2) . class Form(Widget): def __init__(self): super().__init__() self.cell1 = Cell(100, 100, 30) self.cell2 = Cell(130, 100, 30) self.add_widget(self.cell1) self.add_widget(self.cell2) . 

Появился отступ, так что это выглядит лучше не смотря на то, что мы создали вторую клетку с X = 130 вместо 132. Позже мы будем делать мягкое передвижение, основанное на расстоянии между actual_pos и graphical_pos.

Программирование червяка

Объявление

Инициализируем config в main.py

class Config: DEFAULT_LENGTH = 20 CELL_SIZE = 25 APPLE_SIZE = 35 MARGIN = 4 INTERVAL = 0.2 DEAD_CELL = (1, 0, 0, 1) APPLE_COLOR = (1, 1, 0, 1) 

(Поверьте, вы это полюбите!)

Затем присвойте config приложению:

class WormApp(App): def __init__(self): super().__init__() self.config = Config() self.form = Form(self.config) def build(self): self.form.start() return self.form 

Перепишите init и start:

class Form(Widget): def __init__(self, config): super().__init__() self.config = config self.worm = None def start(self): self.worm = Worm(self.config) self.add_widget(self.worm) Clock.schedule_interval(self.update, self.config.INTERVAL) 
class Cell(Widget): graphical_size = ListProperty([1, 1]) graphical_pos = ListProperty([1, 1]) def __init__(self, x, y, size, margin=4): super().__init__() self.actual_size = (size, size) self.graphical_size = (size - margin, size - margin) self.margin = margin self.actual_pos = (x, y) self.graphical_pos_attach() def graphical_pos_attach(self): self.graphical_pos = (self.actual_pos[0] - self.graphical_size[0] / 2, self.actual_pos[1] - self.graphical_size[1] / 2) def move_to(self, x, y): self.actual_pos = (x, y) self.graphical_pos_attach() def move_by(self, x, y, **kwargs): self.move_to(self.actual_pos[0] + x, self.actual_pos[1] + y, **kwargs) def get_pos(self): return self.actual_pos def step_by(self, direction, **kwargs): self.move_by(self.actual_size[0] * direction[0], self.actual_size[1] * direction[1], **kwargs) 

Надеюсь, это было более менее понятно.

class Worm(Widget): def __init__(self, config): super().__init__() self.cells = [] self.config = config self.cell_size = config.CELL_SIZE self.head_init((100, 100)) for i in range(config.DEFAULT_LENGTH): self.lengthen() def destroy(self): for i in range(len(self.cells)): self.remove_widget(self.cells[i]) self.cells = [] def lengthen(self, pos=None, direction=(0, 1)): # Если позиция установлена, мы перемещаем клетку туда, иначе - в соответствии с данным направлением if pos is None: px = self.cells[-1].get_pos()[0] + direction[0] * self.cell_size py = self.cells[-1].get_pos()[1] + direction[1] * self.cell_size pos = (px, py) self.cells.append(Cell(*pos, self.cell_size, margin=self.config.MARGIN)) self.add_widget(self.cells[-1]) def head_init(self, pos): self.lengthen(pos=pos) 

Давайте создадим нашего червячка.

Движение

Теперь подвигаем ЭТО.

class Worm(Widget): . def move(self, direction): for i in range(len(self.cells) - 1, 0, -1): self.cells[i].move_to(*self.cells[i - 1].get_pos()) self.cells[0].step_by(direction) 
class Form(Widget): def __init__(self, config): super().__init__() self.config = config self.worm = None self.cur_dir = (0, 0) def start(self): self.worm = Worm(self.config) self.add_widget(self.worm) self.cur_dir = (1, 0) Clock.schedule_interval(self.update, self.config.INTERVAL) def update(self, _): self.worm.move(self.cur_dir) 

Оно живое! Оно живое!

Управление

Как вы могли судить по первой картинке, управление змеи будет таким:

class Form(Widget): . def on_touch_down(self, touch): ws = touch.x / self.size[0] hs = touch.y / self.size[1] aws = 1 - ws if ws > hs and aws > hs: cur_dir = (0, -1) # Вниз elif ws > hs >= aws: cur_dir = (1, 0) # Вправо elif ws  

Создание фрукта

class Form(Widget): . def __init__(self, config): super().__init__() self.config = config self.worm = None self.cur_dir = (0, 0) self.fruit = None . def random_cell_location(self, offset): x_row = self.size[0] // self.config.CELL_SIZE x_col = self.size[1] // self.config.CELL_SIZE return random.randint(offset, x_row - offset), random.randint(offset, x_col - offset) def random_location(self, offset): x_row, x_col = self.random_cell_location(offset) return self.config.CELL_SIZE * x_row, self.config.CELL_SIZE * x_col def fruit_dislocate(self): x, y = self.random_location(2) self.fruit.move_to(x, y) . def start(self): self.fruit = Cell(0, 0, self.config.APPLE_SIZE, self.config.MARGIN) self.worm = Worm(self.config) self.fruit_dislocate() self.add_widget(self.worm) self.add_widget(self.fruit) self.cur_dir = (1, 0) Clock.schedule_interval(self.update, self.config.INTERVAL) 

Теперь мы должны объявить несколько методов Worm:

class Worm(Widget): . # Тут соберем позиции всех клеток def gather_positions(self): return [cell.get_pos() for cell in self.cells] # Проверка пересекается ли голова с другим объектом def head_intersect(self, cell): return self.cells[0].get_pos() == cell.get_pos() 

Другие бонусы функции gather_positions

Кстати, после того, как мы объявили gather_positions, мы можем улучшить fruit_dislocate:

class Form(Widget): def fruit_dislocate(self): x, y = self.random_location(2) while (x, y) in self.worm.gather_positions(): x, y = self.random_location(2) self.fruit.move_to(x, y) 

На этот моменте позиция яблока не сможет совпадать с позиции хвоста

… и добавим проверку в update()

class Form(Widget): . def update(self, _): self.worm.move(self.cur_dir) if self.worm.head_intersect(self.fruit): directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] self.worm.lengthen(direction=random.choice(directions)) self.fruit_dislocate() 

Определение пересечения головы и хвоста

Мы хотим узнать та же ли позиция у головы, что у какой-то клетки хвоста.

class Form(Widget): . def __init__(self, config): super().__init__() self.config = config self.worm = None self.cur_dir = (0, 0) self.fruit = None self.game_on = True def update(self, _): if not self.game_on: return self.worm.move(self.cur_dir) if self.worm.head_intersect(self.fruit): directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] self.worm.lengthen(direction=random.choice(directions)) self.fruit_dislocate() if self.worm_bite_self(): self.game_on = False def worm_bite_self(self): for cell in self.worm.cells[1:]: if self.worm.head_intersect(cell): return cell return False 

Раскрашивание, декорирование, рефакторинг кода

Начнем с рефакторинга.

Перепишем и добавим

class Form(Widget): . def start(self): self.worm = Worm(self.config) self.add_widget(self.worm) if self.fruit is not None: self.remove_widget(self.fruit) self.fruit = Cell(0, 0, self.config.APPLE_SIZE) self.fruit_dislocate() self.add_widget(self.fruit) Clock.schedule_interval(self.update, self.config.INTERVAL) self.game_on = True self.cur_dir = (0, -1) def stop(self): self.game_on = False Clock.unschedule(self.update) def game_over(self): self.stop() . def on_touch_down(self, touch): if not self.game_on: self.worm.destroy() self.start() return . 

Теперь если червяк мертв (заморожен), если вы нажмете на экран, игра будет начата заново.

Теперь перейдим к декорированию и раскрашиванию.

: popup_label: popup_label score_label: score_label canvas: Color: rgba: (.5, .5, .5, 1.0) Line: width: 1.5 points: (0, 0), self.size Line: width: 1.5 points: (self.size[0], 0), (0, self.size[1]) Label: id: score_label text: "Score: " + str(self.parent.worm_len) width: self.width Label: id: popup_label width: self.width : : canvas: Color: rgba: self.color Rectangle: size: self.graphical_size pos: self.graphical_pos 
class WormApp(App): def build(self): self.config = Config() self.form = Form(self.config) return self.form def on_start(self): self.form.start() 

Раскрасим. Перепишем Cell in .kv:

: canvas: Color: rgba: self.color Rectangle: size: self.graphical_size pos: self.graphical_pos 

Добавим это к Cell.__init__:

self.color = (0.2, 1.0, 0.2, 1.0) # 

и это к Form.start

self.fruit.color = (1.0, 0.2, 0.2, 1.0) 

Превосходно, наслаждайтесь змейкой

Наконец, мы создадим надпись «game over»

class Form(Widget): . def __init__(self, config): . self.popup_label.text = "" . def stop(self, text=""): self.game_on = False self.popup_label.text = text Clock.unschedule(self.update) def game_over(self): self.stop("GAME OVER" + " " * 5 + "\ntap to reset") 

И зададим «раненой» клетке красный цвет:

 def update(self, _): . if self.worm_bite_self(): self.game_over() . 
 def update(self, _): cell = self.worm_bite_self() if cell: cell.color = (1.0, 0.2, 0.2, 1.0) self.game_over() 

Вы еще тут? Самая интересная часть впереди!

Бонус — плавное движение

Так как шаг червячка равен cell_size, выглядит не очень плавно. Но мы бы хотели шагать как можно чаще без полного переписывания логики игры. Таким образом, нам нужен механизм, который двигал бы наши графические позиции (graphical_pos) но не влиял бы на настоящие (actual_pos). Я написал следующий код:

from kivy.clock import Clock import time class Timing: @staticmethod def linear(x): return x class Smooth: def __init__(self, interval=1.0/60.0): self.objs = [] self.running = False self.interval = interval def run(self): if self.running: return self.running = True Clock.schedule_interval(self.update, self.interval) def stop(self): if not self.running: return self.running = False Clock.unschedule(self.update) def setattr(self, obj, attr, value): exec("obj." + attr + " = " + str(value)) def getattr(self, obj, attr): return float(eval("obj." + attr)) def update(self, _): cur_time = time.time() for line in self.objs: obj, prop_name_x, prop_name_y, from_x, from_y, to_x, to_y, start_time, period, timing = line time_gone = cur_time - start_time if time_gone >= period: self.setattr(obj, prop_name_x, to_x) self.setattr(obj, prop_name_y, to_y) self.objs.remove(line) else: share = time_gone / period acs = timing(share) self.setattr(obj, prop_name_x, from_x * (1 - acs) + to_x * acs) self.setattr(obj, prop_name_y, from_y * (1 - acs) + to_y * acs) if len(self.objs) == 0: self.stop() def move_to(self, obj, prop_name_x, prop_name_y, to_x, to_y, t, timing=Timing.linear): self.objs.append((obj, prop_name_x, prop_name_y, self.getattr(obj, prop_name_x), self.getattr(obj, prop_name_y), to_x, to_y, time.time(), t, timing)) self.run() class XSmooth(Smooth): def __init__(self, props, timing=Timing.linear, *args, **kwargs): super().__init__(*args, **kwargs) self.props = props self.timing = timing def move_to(self, obj, to_x, to_y, t): super().move_to(obj, *self.props, to_x, to_y, t, timing=self.timing) 

Тем, кому не понравился сей код

Этот модуль не есть верх элегантности. Я признаю это решение плохим. Но это только hello-world решение.

Так, вы лишь создаете smooth.py and и копируете код в файл.
Наконец, заставим ЭТО работать!

class Form(Widget): . def __init__(self, config): . self.smooth = smooth.XSmooth(["graphical_pos[0]", "graphical_pos[1]"]) 

Заменим self.worm.move() с

class Form(Widget): . def update(self, _): . self.worm.move(self.cur_dir, smooth_motion=(self.smooth, self.config.INTERVAL)) 

А это как методы Cell должны выглядить

class Cell(Widget): . def graphical_pos_attach(self, smooth_motion=None): to_x, to_y = self.actual_pos[0] - self.graphical_size[0] / 2, self.actual_pos[1] - self.graphical_size[1] / 2 if smooth_motion is None: self.graphical_pos = to_x, to_y else: smoother, t = smooth_motion smoother.move_to(self, to_x, to_y, t) def move_to(self, x, y, **kwargs): self.actual_pos = (x, y) self.graphical_pos_attach(**kwargs) def move_by(self, x, y, **kwargs): self.move_to(self.actual_pos[0] + x, self.actual_pos[1] + y, **kwargs) 

Ну вот и все, спасибо за ваше внимание! Код снизу.

Демонстрационное видео как работает результат:

Финальный код
main.py

from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock from kivy.properties import * import random import smooth class Cell(Widget): graphical_size = ListProperty([1, 1]) graphical_pos = ListProperty([1, 1]) color = ListProperty([1, 1, 1, 1]) def __init__(self, x, y, size, margin=4): super().__init__() self.actual_size = (size, size) self.graphical_size = (size - margin, size - margin) self.margin = margin self.actual_pos = (x, y) self.graphical_pos_attach() self.color = (0.2, 1.0, 0.2, 1.0) def graphical_pos_attach(self, smooth_motion=None): to_x, to_y = self.actual_pos[0] - self.graphical_size[0] / 2, self.actual_pos[1] - self.graphical_size[1] / 2 if smooth_motion is None: self.graphical_pos = to_x, to_y else: smoother, t = smooth_motion smoother.move_to(self, to_x, to_y, t) def move_to(self, x, y, **kwargs): self.actual_pos = (x, y) self.graphical_pos_attach(**kwargs) def move_by(self, x, y, **kwargs): self.move_to(self.actual_pos[0] + x, self.actual_pos[1] + y, **kwargs) def get_pos(self): return self.actual_pos def step_by(self, direction, **kwargs): self.move_by(self.actual_size[0] * direction[0], self.actual_size[1] * direction[1], **kwargs) class Worm(Widget): def __init__(self, config): super().__init__() self.cells = [] self.config = config self.cell_size = config.CELL_SIZE self.head_init((100, 100)) for i in range(config.DEFAULT_LENGTH): self.lengthen() def destroy(self): for i in range(len(self.cells)): self.remove_widget(self.cells[i]) self.cells = [] def lengthen(self, pos=None, direction=(0, 1)): if pos is None: px = self.cells[-1].get_pos()[0] + direction[0] * self.cell_size py = self.cells[-1].get_pos()[1] + direction[1] * self.cell_size pos = (px, py) self.cells.append(Cell(*pos, self.cell_size, margin=self.config.MARGIN)) self.add_widget(self.cells[-1]) def head_init(self, pos): self.lengthen(pos=pos) def move(self, direction, **kwargs): for i in range(len(self.cells) - 1, 0, -1): self.cells[i].move_to(*self.cells[i - 1].get_pos(), **kwargs) self.cells[0].step_by(direction, **kwargs) def gather_positions(self): return [cell.get_pos() for cell in self.cells] def head_intersect(self, cell): return self.cells[0].get_pos() == cell.get_pos() class Form(Widget): worm_len = NumericProperty(0) def __init__(self, config): super().__init__() self.config = config self.worm = None self.cur_dir = (0, 0) self.fruit = None self.game_on = True self.smooth = smooth.XSmooth(["graphical_pos[0]", "graphical_pos[1]"]) def random_cell_location(self, offset): x_row = self.size[0] // self.config.CELL_SIZE x_col = self.size[1] // self.config.CELL_SIZE return random.randint(offset, x_row - offset), random.randint(offset, x_col - offset) def random_location(self, offset): x_row, x_col = self.random_cell_location(offset) return self.config.CELL_SIZE * x_row, self.config.CELL_SIZE * x_col def fruit_dislocate(self): x, y = self.random_location(2) while (x, y) in self.worm.gather_positions(): x, y = self.random_location(2) self.fruit.move_to(x, y) def start(self): self.worm = Worm(self.config) self.add_widget(self.worm) if self.fruit is not None: self.remove_widget(self.fruit) self.fruit = Cell(0, 0, self.config.APPLE_SIZE) self.fruit.color = (1.0, 0.2, 0.2, 1.0) self.fruit_dislocate() self.add_widget(self.fruit) self.game_on = True self.cur_dir = (0, -1) Clock.schedule_interval(self.update, self.config.INTERVAL) self.popup_label.text = "" def stop(self, text=""): self.game_on = False self.popup_label.text = text Clock.unschedule(self.update) def game_over(self): self.stop("GAME OVER" + " " * 5 + "\ntap to reset") def align_labels(self): try: self.popup_label.pos = ((self.size[0] - self.popup_label.width) / 2, self.size[1] / 2) self.score_label.pos = ((self.size[0] - self.score_label.width) / 2, self.size[1] - 80) except: print(self.__dict__) assert False def update(self, _): if not self.game_on: return self.worm.move(self.cur_dir, smooth_motion=(self.smooth, self.config.INTERVAL)) if self.worm.head_intersect(self.fruit): directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] self.worm.lengthen(direction=random.choice(directions)) self.fruit_dislocate() cell = self.worm_bite_self() if cell: cell.color = (1.0, 0.2, 0.2, 1.0) self.game_over() self.worm_len = len(self.worm.cells) self.align_labels() def on_touch_down(self, touch): if not self.game_on: self.worm.destroy() self.start() return ws = touch.x / self.size[0] hs = touch.y / self.size[1] aws = 1 - ws if ws > hs and aws > hs: cur_dir = (0, -1) elif ws > hs >= aws: cur_dir = (1, 0) elif ws  

smooth.py

from kivy.clock import Clock import time class Timing: @staticmethod def linear(x): return x class Smooth: def __init__(self, interval=1.0/60.0): self.objs = [] self.running = False self.interval = interval def run(self): if self.running: return self.running = True Clock.schedule_interval(self.update, self.interval) def stop(self): if not self.running: return self.running = False Clock.unschedule(self.update) def setattr(self, obj, attr, value): exec("obj." + attr + " = " + str(value)) def getattr(self, obj, attr): return float(eval("obj." + attr)) def update(self, _): cur_time = time.time() for line in self.objs: obj, prop_name_x, prop_name_y, from_x, from_y, to_x, to_y, start_time, period, timing = line time_gone = cur_time - start_time if time_gone >= period: self.setattr(obj, prop_name_x, to_x) self.setattr(obj, prop_name_y, to_y) self.objs.remove(line) else: share = time_gone / period acs = timing(share) self.setattr(obj, prop_name_x, from_x * (1 - acs) + to_x * acs) self.setattr(obj, prop_name_y, from_y * (1 - acs) + to_y * acs) if len(self.objs) == 0: self.stop() def move_to(self, obj, prop_name_x, prop_name_y, to_x, to_y, t, timing=Timing.linear): self.objs.append((obj, prop_name_x, prop_name_y, self.getattr(obj, prop_name_x), self.getattr(obj, prop_name_y), to_x, to_y, time.time(), t, timing)) self.run() class XSmooth(Smooth): def __init__(self, props, timing=Timing.linear, *args, **kwargs): super().__init__(*args, **kwargs) self.props = props self.timing = timing def move_to(self, obj, to_x, to_y, t): super().move_to(obj, *self.props, to_x, to_y, t, timing=self.timing) 

worm.kv

: popup_label: popup_label score_label: score_label canvas: Color: rgba: (.5, .5, .5, 1.0) Line: width: 1.5 points: (0, 0), self.size Line: width: 1.5 points: (self.size[0], 0), (0, self.size[1]) Label: id: score_label text: "Score: " + str(self.parent.worm_len) width: self.width Label: id: popup_label width: self.width : : canvas: Color: rgba: self.color Rectangle: size: self.graphical_size pos: self.graphical_pos 

Код, немного измененный @tshirtman

Мой код был проверен tshirtman, одним из участников Kivy, который предложил мне использовать инструкцию Point вместо создания виджета на каждую клетку. Однако мне не кажется сей код более простым для понимания чем мой, хотя он точно лучше в понимании разработки UI и gamedev. В общем, вот код:

main.py

from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock from kivy.properties import * import random import smooth class Cell: def __init__(self, x, y): self.actual_pos = (x, y) def move_to(self, x, y): self.actual_pos = (x, y) def move_by(self, x, y): self.move_to(self.actual_pos[0] + x, self.actual_pos[1] + y) def get_pos(self): return self.actual_pos class Fruit(Cell): def __init__(self, x, y): super().__init__(x, y) class Worm(Widget): margin = NumericProperty(4) graphical_poses = ListProperty() inj_pos = ListProperty([-1000, -1000]) graphical_size = NumericProperty(0) def __init__(self, config, **kwargs): super().__init__(**kwargs) self.cells = [] self.config = config self.cell_size = config.CELL_SIZE self.head_init((self.config.CELL_SIZE * random.randint(3, 5), self.config.CELL_SIZE * random.randint(3, 5))) self.margin = config.MARGIN self.graphical_size = self.cell_size - self.margin for i in range(config.DEFAULT_LENGTH): self.lengthen() def destroy(self): self.cells = [] self.graphical_poses = [] self.inj_pos = [-1000, -1000] def cell_append(self, pos): self.cells.append(Cell(*pos)) self.graphical_poses.extend([0, 0]) self.cell_move_to(len(self.cells) - 1, pos) def lengthen(self, pos=None, direction=(0, 1)): if pos is None: px = self.cells[-1].get_pos()[0] + direction[0] * self.cell_size py = self.cells[-1].get_pos()[1] + direction[1] * self.cell_size pos = (px, py) self.cell_append(pos) def head_init(self, pos): self.lengthen(pos=pos) def cell_move_to(self, i, pos, smooth_motion=None): self.cells[i].move_to(*pos) to_x, to_y = pos[0], pos[1] if smooth_motion is None: self.graphical_poses[i * 2], self.graphical_poses[i * 2 + 1] = to_x, to_y else: smoother, t = smooth_motion smoother.move_to(self, "graphical_poses[" + str(i * 2) + "]", "graphical_poses[" + str(i * 2 + 1) + "]", to_x, to_y, t) def move(self, direction, **kwargs): for i in range(len(self.cells) - 1, 0, -1): self.cell_move_to(i, self.cells[i - 1].get_pos(), **kwargs) self.cell_move_to(0, (self.cells[0].get_pos()[0] + self.cell_size * direction[0], self.cells[0].get_pos()[1] + self.cell_size * direction[1]), **kwargs) def gather_positions(self): return [cell.get_pos() for cell in self.cells] def head_intersect(self, cell): return self.cells[0].get_pos() == cell.get_pos() class Form(Widget): worm_len = NumericProperty(0) fruit_pos = ListProperty([0, 0]) fruit_size = NumericProperty(0) def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.worm = None self.cur_dir = (0, 0) self.fruit = None self.game_on = True self.smooth = smooth.Smooth() def random_cell_location(self, offset): x_row = self.size[0] // self.config.CELL_SIZE x_col = self.size[1] // self.config.CELL_SIZE return random.randint(offset, x_row - offset), random.randint(offset, x_col - offset) def random_location(self, offset): x_row, x_col = self.random_cell_location(offset) return self.config.CELL_SIZE * x_row, self.config.CELL_SIZE * x_col def fruit_dislocate(self, xy=None): if xy is not None: x, y = xy else: x, y = self.random_location(2) while (x, y) in self.worm.gather_positions(): x, y = self.random_location(2) self.fruit.move_to(x, y) self.fruit_pos = (x, y) def start(self): self.worm = Worm(self.config) self.add_widget(self.worm) self.fruit = Fruit(0, 0) self.fruit_size = self.config.APPLE_SIZE self.fruit_dislocate() self.game_on = True self.cur_dir = (0, -1) Clock.schedule_interval(self.update, self.config.INTERVAL) self.popup_label.text = "" def stop(self, text=""): self.game_on = False self.popup_label.text = text Clock.unschedule(self.update) def game_over(self): self.stop("GAME OVER" + " " * 5 + "\ntap to reset") def align_labels(self): self.popup_label.pos = ((self.size[0] - self.popup_label.width) / 2, self.size[1] / 2) self.score_label.pos = ((self.size[0] - self.score_label.width) / 2, self.size[1] - 80) def update(self, _): if not self.game_on: return self.worm.move(self.cur_dir, smooth_motion=(self.smooth, self.config.INTERVAL)) if self.worm.head_intersect(self.fruit): directions = [(0, 1), (0, -1), (1, 0), (-1, 0)] self.worm.lengthen(direction=random.choice(directions)) self.fruit_dislocate() cell = self.worm_bite_self() if cell is not None: self.worm.inj_pos = cell.get_pos() self.game_over() self.worm_len = len(self.worm.cells) self.align_labels() def on_touch_down(self, touch): if not self.game_on: self.worm.destroy() self.start() return ws = touch.x / self.size[0] hs = touch.y / self.size[1] aws = 1 - ws if ws > hs and aws > hs: cur_dir = (0, -1) elif ws > hs >= aws: cur_dir = (1, 0) elif ws  

smooth.py

from kivy.clock import Clock import time class Timing: @staticmethod def linear(x): return x class Smooth: def __init__(self, interval=1.0/60.0): self.objs = [] self.running = False self.interval = interval def run(self): if self.running: return self.running = True Clock.schedule_interval(self.update, self.interval) def stop(self): if not self.running: return self.running = False Clock.unschedule(self.update) def set_attr(self, obj, attr, value): exec("obj." + attr + " = " + str(value)) def get_attr(self, obj, attr): return float(eval("obj." + attr)) def update(self, _): cur_time = time.time() for line in self.objs: obj, prop_name_x, prop_name_y, from_x, from_y, to_x, to_y, start_time, period, timing = line time_gone = cur_time - start_time if time_gone >= period: self.set_attr(obj, prop_name_x, to_x) self.set_attr(obj, prop_name_y, to_y) self.objs.remove(line) else: share = time_gone / period acs = timing(share) self.set_attr(obj, prop_name_x, from_x * (1 - acs) + to_x * acs) self.set_attr(obj, prop_name_y, from_y * (1 - acs) + to_y * acs) if len(self.objs) == 0: self.stop() def move_to(self, obj, prop_name_x, prop_name_y, to_x, to_y, t, timing=Timing.linear): self.objs.append((obj, prop_name_x, prop_name_y, self.get_attr(obj, prop_name_x), self.get_attr(obj, prop_name_y), to_x, to_y, time.time(), t, timing)) self.run() class XSmooth(Smooth): def __init__(self, props, timing=Timing.linear, *args, **kwargs): super().__init__(*args, **kwargs) self.props = props self.timing = timing def move_to(self, obj, to_x, to_y, t): super().move_to(obj, *self.props, to_x, to_y, t, timing=self.timing) 

worm.kv

: popup_label: popup_label score_label: score_label canvas: Color: rgba: (.5, .5, .5, 1.0) Line: width: 1.5 points: (0, 0), self.size Line: width: 1.5 points: (self.size[0], 0), (0, self.size[1]) Color: rgba: (1.0, 0.2, 0.2, 1.0) Point: points: self.fruit_pos pointsize: self.fruit_size / 2 Label: id: score_label text: "Score: " + str(self.parent.worm_len) width: self.width Label: id: popup_label width: self.width : canvas: Color: rgba: (0.2, 1.0, 0.2, 1.0) Point: points: self.graphical_poses pointsize: self.graphical_size / 2 Color: rgba: (1.0, 0.2, 0.2, 1.0) Point: points: self.inj_pos pointsize: self.graphical_size / 2 

Задавайте любые вопросы.

Изучение Python Kivy в одной статье! Основы Kivy

Изучение Python Kivy в одной статье! Основы Kivy

Python обладает большим набором библиотек для разработки графического интерфейса. Ранее мы уже знакомились с TKinter, а также PyQT5. Сейчас мы рассмотрим принцип работы с библиотекой Kivy.

Зачем изучать Kivy?

Разрабатывать программы можно на разных языках программирования. Даже при помощи JavaScript и библиотеки Electron это также можно делать. В то же время, создавать крупные ПК проекты на JS не охота, ибо язык медленный и не столь удобный. Использовать Swift или C# тоже не хочется, так как в этом случае разработка будет вестись лишь под одну операционную систему.

Можно делать проекты на Java, React Native или на Flutter. Все они хороши, но все же еще хорошим и крупным игроком является Python вместе со своими библиотеками. Он обеспечивает разработку кроссплатформенных программ с хорошей скоростью выполнения. И еще приятным бонусом является само написание программы, ведь синтаксис языка Python хороший.

Для языка Python сфера полноценных проектов не первостепенно важна, но все же язык предоставляет отличные возможности для разработки полноценных программ под разные операционные системы.

Информация относительно Kivy

Фреймворк Kivy разрабатывается с 2011 года. С момента релиза на его основе было построено много проектов под платформу Андирод.

Если сравнивать Kivy с другими библиотеками языка Питон по набору функций, то среди крупных конкурентов можно выделить PyQT . Все прочие библиотеки явно будут уступать по функционалу.

Важно отметить, что Kivy имеет большой набор уже готовых проектов, которые вы можете использовать для построения своих программ.

Установка Kivy

Для установки Kivy вам потребуется стандартный пакетный менеджер pip и программа для написания кода. Для получения пакетного менеджера выполните установку Python на ваш компьютер, при чем установите Питон именно версии 3.7. Он лучше остальных подходит под Kivy.

Чтобы выполнить установку пропишите в терминале команду pip install kivy и далее библиотека будет готова к использованию.

Создание проекта

Ниже представлен код готового приложения на Kivy. Полная информация относительно Питон Киви находится в обучающем видео в конце этой статьи.

# Импорт всех классов from kivy.app import App from kivy.uix.label import Label from kivy.uix.textinput import TextInput from kivy.uix.boxlayout import BoxLayout from kivy.core.window import Window # Глобальные настройки Window.size = (250, 200) Window.clearcolor = (255/255, 186/255, 3/255, 1) Window.title = "Конвертер" class MyApp(App): # Создание всех виджетов (объектов) def __init__(self): super().__init__() self.label = Label(text='Конвертер') self.miles = Label(text='Мили') self.metres = Label(text='Метры') self.santimetres = Label(text='Сантиметры') self.input_data = TextInput(hint_text='Введите значение (км)', multiline=False) self.input_data.bind(text=self.on_text) # Добавляем обработчик события # Получаем данные и производит их конвертацию def on_text(self, *args): data = self.input_data.text if data.isnumeric(): self.miles.text = 'Мили: ' + str(float(data) * 0.62) self.metres.text = 'Метры: ' + str(float(data) * 1000) self.santimetres.text = 'Сантиметры: ' + str(float(data) * 100000) else: self.input_data.text = '' # Основной метод для построения программы def build(self): # Все объекты будем помещать в один общий слой box = BoxLayout(orientation='vertical') box.add_widget(self.label) box.add_widget(self.input_data) box.add_widget(self.miles) box.add_widget(self.metres) box.add_widget(self.santimetres) return box # Запуск проекта if __name__ == "__main__": MyApp().run()

Видео на эту тему

Детальный разбор Python Kivy вы можете просмотреть на видео ниже. В видеоуроке показан разбор библиотеки и её возможностей.

Дополнительный курс

На нашем сайте также есть углубленный курс по изучению языка Питон . В ходе огромной программы вы изучите не только язык Питон, но также научитесь создавать веб сайты за счёт веб технологий и фреймворка Джанго. За курс вы изучите массу нового и к концу программы будете уметь работать с языком Питон, создавать на нём полноценные приложения на основе библиотеки Kivy, а также создавать веб сайты на основе библиотеки Джанго.

Больше интересных новостей

С чего начать изучение программирования новичку?

С чего начать изучение программирования новичку?

Разоблачение главных мифов о разработке ПО

Разоблачение главных мифов о разработке ПО

Почему программисты повсюду используют «i»

Почему программисты повсюду используют «i»

Рационально ли запускать коммерческий сайт на WordPress сегодня?

Рационально ли запускать коммерческий сайт на WordPress сегодня?

Комментарии (1)

Семён 18 ноября 2022 в 11:31

При попытке установить Kivy вылазит ошибка. Насколько я понял, для Питон 3.11 нет собранных пакетов и их надо собирать самому.

Grrrr 22 марта 2023 в 16:03

Решается вот так. Две команды поочерёдно.

7. Создание простого приложения Kivy

Приложение Kivy представляет из себя простой файл Python, который содержит код Kivy. Файл в нашем приложении будет называться «main.py». Причина в том, что при создании мобильного приложения должен быть файл с именем «main.py», который является входом приложения. В приложении, которое будет создано, будет три виджета Kivy, которые представляют собой ввод текста (text input), ярлык (label) и кнопку (button). Эти виджеты располагаются вертикально в окне при использовании коробочной схемы расположения инструментов. Они появятся в соответствии с тем порядком, в котором были добавлены в коробочную схему расположения. Другими словами, текстовый ввод будет первым виджетом, ярлык вторым и кнопка в самом низу. Когда кнопка нажата, текст, введенный в текстовый ввод, будет отображаться в ярлыке. Вот код Kivy этого приложения.

1. import kivy.app
  1. import kivy.uix.boxlayout
  2. import kivy.uix.textinput
  3. import kivy.uix.label
  4. import kivy.uix.button
  5. class SimpleApp(kivy.app.App):
  6. def build(self):
  7. self.textInput = kivy.uix.textinput.TextInput()
  8. self.label = kivy.uix.label.Label(text=”Your Message.”)
  9. self.button = kivy.uix.button.Button(text=”Click Me.”)
  10. self.button.bind(on_press=self.displayMessage)
  11. self.boxLayout = kivy.uix.boxlayout.BoxLayout(orientation=”vertical”)
  12. self.boxLayout.add_widget(self.textInput)
  13. self.boxLayout.add_widget(self.label)
  14. self.boxLayout.add_widget(self.button)
  15. return self.boxLayout
  16. def displayMessage(self, btn):
  17. self.label.text = self.textInput.text
  18. if __name__ == “__main__”:
  19. simpleApp = SimpleApp()
  20. simpleApp.run()

Метод сборки — это то, что вызывается после запуска приложения, и, таким образом, оно используется для инициализации окна графического интерфейса Kivy. Три виджета создаются, а затем добавляются в макет окна. Метод bind привязывает метод обратного вызова к кнопке, чтобы выполняться при нажатии. Метод обратного вызова называется «displayMessage», который устанавливает текстом ярлыка текст, который введён в виджет текстового ввода . Приложения запускаются, только если файл main.py выполняется, гарантируя, что переменная «__name__» имеет значение «__main__» внутри оператора if. Делать так — хорошая практика. Для запуска приложения необходимо выполнить два шага. Сначала нужно активировать созданную ранее виртуальную среду Kivy с именем «mykivyinstall». Затем, запустить файл приложения «main.py» после перехода в папку, в которой он существует. Эти шаги показаны на рисунке 3.

На рисунке 4 показано окно с тремя созданными ранее виджетами. Обратите внимание, что высота окна делится поровну между тремя виджетама так, чтобы каждый виджет имел одну третью высоты окна. В этом примере сообщение «Hello Kivy» вводится в поле текстового ввод. Когда кнопка нажата, сообщение появится в ярлыке.

На этом этапе можно сказать, что приложение Kivy для рабочего стола успешно создано. Теперь мы можем начать упаковку этого проекта как приложения для Android.

8. Установка Buildozer

Инструмент Buildozer используется для упаковки проекта в качестве приложения для Android. После установки Buildozer автоматизирует процесс создания приложения для Android. Чтобы установить Buildozer, необходимо разрешить некоторые зависимости. В дополнение к установленным ранее Cython и git, есть некоторые другие библиотеки, которые должны быть установлены. На основе инструкций по установке взятых с http://buildozer.readthedocs.io/en/latest/installation.html, все зависимости можно скачать и установить с помощью следующих команд Ubuntu:

ahmed-gad@ubuntu:~$ sudo dpkg --add-architecture i386ahmed-gad@ubuntu:~$ sudo get install build-essential ccache libncurses5:i386 libstdc++6:i386 libgtk2.0-0:i386 libpangox-1.0-0:i386 libpangoxft-1.0-0:i386 libidn11:i386 python2.7 python2.7-dev openjdk-8-jdk unzip zlib1g-dev zlib1g:i386

Buildozer может быть установлен с помощью этой команды. Эта команда гарантирует, что Buildozer будет установлен и обновлен.

ahmed-gad@ubuntu:~$ sudo install –upgrade buildozer

После успешной установки Buildozer, давайте подготовим все необходимые файлы, чтобы успешно создать приложение для Android.

9. Создание файла buildozer.spec

Структура нашего проекта показана на рисунке 5. В папке с именем simpleapp размещен файл main.py, созданный ранее. Красота Kivy заключается в том, что этот же файл Python будет использоваться без изменений в приложении для Android. Но есть и другой файл с именем buildozer.spec, который необходим для создания приложения. Этот файл содержит информацию об Android-приложении, такую как название и версия. Как создать этот файл?

Файл buildozer.spec может быть сгенерирован с использованием инструмента Buildozer. Измените текущий рабочий каталог на каталог, в котором размещён файл приложения main.py, а затем выполните следующую команду:

ahmed-gad@ubuntu:~/Desktop/simpleapp$ buildozer init

Появится сообщение, указывающее, что был создан файл buildozer.spec, как показано на рисунке 6.

Далее перечислены некоторые из важных свойств приложения Android в файле buildozer.spec:

[app]title = Simple Applicationpackage.name = simpleapppackage.domain = org.simpleappsource.dir = .source.include_exts = py,png,jpg,kv,atlasversion = 0.1requirements = kivyorientation = portraitosx.python_version = 3osx.kivy_version = 1.9.1fullscreen = 0

Например, заголовок (title) содержит заголовок приложения, исходный каталог (source directory) ссылается на каталог приложения, который устанавливается в этом случае как текущий каталог, версия приложения, версии Python и Kivy и прочее. Эти поля находятся внутри раздела [app] файла спецификации. Вы можете проверить спецификации приложения пройдя по этой ссылке http://buildozer.readthedocs.io/en/latest/specifications.html. Вы также можете отредактировать файл спецификации, чтобы изменить все поля, которые, по вашему мнению, требуют редактирования.

После подготовки всех файлов, необходимых для создания Android приложения, давайте наконец его создадим.

10. Создание приложения для Android с помощью Buildozer

Buildozer — хороший инструмент для создания приложения для Android, потому что он готовит среду в соответствии со всеми требованиям по созданию успешного приложения. Эти такие требования такие, как python-for-android, Android SDK, NDK и другие. Внутри каталога приложения его можно создать, используя следующую команду:

ahmed-gad@ubuntu:~/Desktop/simpleapp$ buildozer android release

На рисунке 7 показан ответ при вводе команды. При создании приложения в первый раз, Buildozer должен загрузить все эти зависимости. Это займет некоторое время, пока они загрузятся и установятся. Потерпите.

После выполнения команды файл APK будет найден в следующем каталоге проекта: /simpleapp/.buildozer/android/platform/build/dists/simpleapp/bin. Файл APK можно перенести на устройство Android для его запуска. Также можно подключить устройство Android к машине, создать, развернуть и запустить приложение, используя одну команду, которая выглядит следующим образом:

ahmed-gad@ubuntu:~/Desktop/simpleapp$ buildozer android release deploy run

На рисунке 8 показан запуск приложения для Android.

11. Используемые источники

Филипс, Дасти. Создание приложений в Kivy: Мобильный софт вместе с Python. “O’Reilly Media, Inc.”, 2014.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *