# Кубит
Кубит (также квантовый бит) — наименьший элемент хранения информации в квантовом компьютере. Элементы классических компьютеров могут хранить только один бит: 1 или 0. Кубиты — это квантовые объекты, которые могут находиться в суперпозиции двух состояний, то есть кодировать одновременно и логическую единицу, и ноль. Это открывает новые возможности для обработки информации: компьютер из нескольких тысяч кубитов может производить вычисления со скоростью, недоступной современным суперкомпьютерам. В роли кубитов могут выступать атомы или электроны — цифровые данные записываются на их спине. Такие кубиты неустойчивы к воздействиям окружающей среды, способной нарушить их корректную работу, а процедура считывания и записи информации на них крайне сложна. В начале 2000-х годов ученые создали «искусственные атомы», которые ведут себя в соответствии с законами квантовой физики, но проще в использовании. Одни из таких объектов — джозефсоновские контакты — состоят из двух сверхпроводников, разделенных тонким слоем диэлектрика. Электроны благодаря квантовым эффектам могут «просачиваться» (туннелировать) сквозь диэлектрик. Кубиты, построенные из нескольких джозефсоновских контактов, работают как настоящие атомы: они могут излучать и поглощать свет, пребывать в нейтральном и возбужденном состоянии. Такие кубиты могут быть созданы с помощью существующих методов литографии, на которых основано производство микросхем. В мае 2015 года российские ученые впервые создали шесть кубитов, каждый из которых состоит из четырех джозефсоновских контактов. Сами контакты состоят из алюминиевых полосок, разделенных слоем диэлектрика (оксида алюминия) толщиной около двух нанометров. В качестве проводников использовался алюминий. Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. Источник картинки: http://bit.ly/2cK6qRn
Для создания декогерентности в кубитах оказалось достаточно фонового излучения
27 августа 2020, 19:39
Впервые создана полносвязная система из 32 кубитов
26 августа 2020, 22:42
«Гигантские атомы» помогли уменьшить погрешность квантовых вычислений
30 июля 2020, 18:08
Атом рубидия поймали в ловушку и сфотографировали
11 июня 2020, 09:46
Новая программа сумела предсказать поведение кубитов в шумной среде
27 мая 2020, 09:39
Новый алгоритм исправляет ошибки в работе квантового компьютера
25 мая 2020, 13:20
Физики открыли новый способ управления квантовыми состояниями
21 апреля 2020, 18:10
Рабочую температуру кубитов повысили
16 апреля 2020, 20:40
Байки из лабы: что нам стоит кубит построить
07 апреля 2020, 12:24
Для использования в качестве кубитов разработали парные квантовые точки
31 января 2020, 11:31
Для ионных ловушек квантовых компьютеров нашли подходящую пару
30 января 2020, 10:39
Кубиты заставили взаимодействовать на больших расстояниях
26 декабря 2019, 13:14
- Новости
- События
- Фото дня
- Цифровая энциклопедия
- Дискуссионный клуб
- Открытия российских ученых
Indicator, 2023 г. 18+
Нашли опечатку? Выделите текст и нажмите Ctrl+Enter
Все права защищены. Полное или частичное копирование материалов Сайта в коммерческих целях разрешено только с письменного разрешения владельца Сайта. В случае обнаружения нарушений, виновные лица могут быть привлечены к ответственности в соответствии с действующим законодательством Российской Федерации.
Кубит
В отличие от обычного бита, способного иметь только значения 1 и 0, квантовый бит (кубит) может находиться в суперпозиции этих состояний, то есть одновременно в значении 1 и 0. На практике кубит может существовать в самых разных комбинациях этих значений, что в перспективе позволит создавать сверхбыстродействующие компьютеры.
Кубиты станут строительными элементами будущих квантовых компьютеров, способных решать задачи, практически недоступные классическим цифровым компьютерам. Для выполнения вычислений на квантовом компьютере необходимо привести во взаимодействие несколько кубитов, причем таким образом, чтобы они образовали единую квантовую систему. Затем этой системе надо позволить развиваться по законам квантовой механики и спустя определенное время выяснить, в какое состояние она пришла.
С ростом числа объединенных кубитов, вычислительная мощность такой квантовой системы экспоненциально растет. Теоретически это позволяет квантовому компьютеру справляться с задачами, на которые обычному цифровому компьютеру понадобятся миллионы лет. Например, давно известен так называемый алгоритм Шора, позволяющий быстро раскладывать большие числа на простые множители (задача, необходимая для взлома современных шифров). Обычные компьютеры решают эту задачу перебором возможных делителей, поэтому длинные числа современные компьютеры могут обрабатывать годами. Квантовый компьютер справился бы с такой задачей за считанные минуты и даже секунды, в зависимости от производительности.
Российские исследования
2023
Атомы могут использоваться в качестве кубитов в квантовом компьютере
Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Значит, эти атомы можно использовать в качестве кубитов в квантовом компьютере. Работа опубликована в журнале Communication Physics. Об этом 24 июля 2023 года сообщили представители МФТИ.
Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Этот эффект возникает из-за принципа суперпозиции в квантовой механике. Благодаря суперпозиции кубит в процессе вычислений находится во всех состояниях Российский рынок мобильных приложений для бизнеса и госсектора: крупнейшие игроки, тенденции и перспективы. Обзор TAdviser сразу и поэтому помогает обработать гораздо больше информации, чем классический бит. В роли кубита могут выступать различные квантовые системы: сверхпроводящие искусственные атомы, квантовые точки, атомы в ловушках, реальные атомы в твердом теле и т. д. Однако слабым местом всех существующих кубитов является неустойчивость к шумам. Например, небольшое колебание температуры или магнитного поля могут нарушить квантовое состояние кубита, и он окажется непригоден к вычислениям. Эта проблема разрушения квантового состояния называется декогеренцией и является одной из главных фундаментальных причин, по которой квантовые компьютеры пока не имеют широкого применения. Ученые ищут физические системы, в которых можно реализовать кубиты, более устойчивые к шумам.
Например, если в некоторые полупроводники добавить примеси, электроны примесных атомов будут долго (по квантовым меркам это несколько наносекунд) сохранять направление спина — собственного магнитного момента. Благодаря длительному времени когеренции спина такие атомные системы можно использовать в качестве кубитов. Физики из Центра перспективных методов мезофизики и нанотехнологий МФТИ исследуют подобные структуры и подбирают оптимальные материалы для них.
В работе ученые центра заменили часть атомов теллура в дихалькогениде молибден теллур (2H-MoTe2) на атомы брома и с помощью электронного пармагнитного резонанса и туннельной сканирующей микроскопии исследовали структуру электронов примесного атома и оценили время когерентности системы.
рассказал Василий Столяров, директор центра, руководитель лаборатории сверхпроводящих и квантовых технологий, доктор физико-математических наук
Василий Столяров
Для понимания эффектов, которые изучали физики, нужно обратиться к электронной структуре вещества. Электроны каждого атома, согласно квантовой механике, имеют определенную энергию — находятся на энергетическом уровне. В кристаллах электроны могут переходить от одного атома к другому, их энергетический спектр становится практически сплошным, без разделения на уровни. Однако в полупроводниках существует запрещенная зона — диапазон энергий, которые электроны не могут принимать. Но, если добавить примесный атом в полупроводник, электронам этого атома станут доступны уровни у верхнего или нижнего края запрещенной зоны. Получается, такое укромное место, где можно долго удерживать электрон — отличная площадка для кубита. Стоит отметить, что это возможно при температурах ниже 250 градусов Цельсия.
Важно правильно выбрать полупроводник и примесь, чтобы локализовать электроны. Поэтому физики обратили внимание на дихалькогениды переходных металлов — слоистые двумерные полупроводники, состоящие из атома переходного металла (здесь молибдена) и халькогена (здесь теллура). В кристаллах дихалькогенидов из-за симметрии (атомы располагаются в форме шестиугольника) самые выгодные энергетические состояния для электронов находятся в определенных областях пространства — долинах — вокруг атомов. Более того, электроны способны в них некоторое время сохранять проекцию спина — собственного магнитного момента. Однако такие времена слишком малы для когерентности кубита.
По этой причине исследователи заместили атомы теллура на атомы брома, «открыв» для электронов дополнительные уровни вблизи нижнего края запрещенной зоны. В этом случае возникало связанное состояние электронов и долин, и проекция спина на этих уровнях сохранялась в течение нескольких наносекунд, что достаточно для создания кубита.
Для изучения столь тонких эффектов ученые использовали несколько высокоточных приборов. Сначала они получили электронную структуру примеси брома с помощью электронного парамагнитного резонанса — расщепления энергетических уровней во внешнем магнитном поле — и оценили по этим данным время когерентности спинового состояния. Оно составило порядка 5 наносекунд при температурах ниже –258 градусов Цельсия (15 кельвинов).
Затем применили сканирующий туннельный микроскоп — устройство, определяющее рельеф поверхности с точностью до атома. На иглу микроскопа подавалось напряжение, и электроны с поверхности туннелировали на иглу, создавая ток. По изменению значения тока физики получали пространственную локализацию электронов и их энергию. Эти измерения подтвердили, что состояния электронов брома локализуются вблизи долин, а их энергия меняется. Именно связь долин и примеси обеспечивала длительное время когерентности. Физики предполагают, что его можно увеличить, если взять однослойный кристалл дихалькогенида. Аналогичные экспериментальным данным исследователи получили с помощью компьютерного моделирования.
Таким образом, ученые показали возможность использования реальных атомов в качестве кубитов и теоретически объяснили длительное время когерентности, построив электронную структуру материала.
подвел итоги Василий Столяров
Работа выполнена при поддержке Министерства науки и высшего образования РФ и Федеральной программы академического лидерства «Приоритет 2030».
В исследовании, кроме сотрудников Центра перспективных методов мезофизики и нанотехнологий МФТИ, принимали участие их коллеги из Университета Париж-Сакле и Университета Сорбонна (Франция), МИСиС, Всероссийского НИИ автоматики имени Н. Л. Духова, Института физики металлов им. М. Н. Михеева (Екатеринбург), Института физики ионных пучков и исследования материалов (Германия) и Университета Аалто (Финляндия).
Российские ученые повысили производительность квантовых процессоров с помощью кудитов
Ученые НИТУ МИСиС и Российского квантового центра предложили подход к реализации квантовых алгоритмов с использованием дополнительных уровней квантовой системы, который позволил на порядок повысить итоговое качество выполнения квантовых алгоритмов. Об этом 7 апреля 2023 года TAdviser сообщили представители НИТУ МИСиС.
Российские ученые знают, как сделать квантовый процессор мощнее
По словам ученых, основной способ повышения производительности квантовых процессоров — увеличение числа их кубитов — наименьшей единицы информации в квантовом компьютере. Однако ионы или атомы, которые часто выступают в роли кубитов, имеют больше двух уровней и могут работать не только как кубиты, но и как кудиты, которые являются расширенной версией кубита и могут находиться в трех (кутриты), четырех (кукварты), пяти (куквинты) и более состояниях.
Дополнительные состояния позволяют плотнее кодировать данные в физических носителях, что, в свою очередь, дает возможность реализовывать все более сложные и комплексные квантовые алгоритмы. Таким образом возрастает мощность квантового процессора, и операции могут производиться значительно быстрее, пояснили исследователи.
По состоянию на апрель 2023 года, большая часть исследований, посвященных квантовым операциям, сосредоточена на кубитах — все операции, которые применяются к квантовой системе, представляются в виде одно- и двухкубитных квантовых вентилей, преобразующих входные состояния кубитов в выходные по определенному закону. Для работы с кудитами важно найти новые подходы с математической точки зрения.
Ученые Университета МИСиС и Российского квантового центра рассмотрели один из способов использования куквинтов – 5-уровневых кудитов – и представили модель декомпозиции обобщенного вентиля Тоффоли. В качестве примера рассмотрен квантовый алгоритм Гровера для поиска по неупорядоченной базе данных. Известно, что, используя только этот вентиль, можно построить любую обратимую классическую логическую схему, например, арифметическое устройство или классический процессор.
Заведующий лабораторией квантовых информационных технологий НИТУ МИСиС Алексей Федоров
В качестве раскладываемого многокубитного гейта ученые выбрали часто встречающийся в квантовых алгоритмах многокубитный гейт Тоффоли – обобщенную на n кубитов версию универсального контролируемого обратимого вентиля. Его применение инвертирует состояние n-го кубита, если все остальные n-1 кубитов находятся в состоянии 1. Как отметили исследователи, располагая в каждом куквинте по два кубита и используя пятый уровень в качестве вспомогательного, можно значительно сократить число двухчастичных гейтов в его разложении по сравнению с расположениями на кубитах и таким образом повысить качество выполнения квантовых алгоритмов.
По сравнению с кубитами, реализация на куквинтах при большом числе (>5) задействованных в алгоритме кубитов требует на порядок меньше двухчастичных гейтов, отметили ученые. Например, для 8-кубитного алгоритма Гровера на кубитах требуется выполнить больше 1000 двухчастичных гейтов, в то время как для его реализации на куквинтах их потребуется всего 88.
В целом проведенное исследование продемонстрировало одно из преимуществ использования кудитов для квантовых вычислений и помогло по-новому взглянуть на их потенциал, подчеркнули в НИТУ МИСиС и РКЦ. Полученные учеными результаты применимы к квантовым процессорам, основанным на различных физических платформах, таких как ионы, нейтральные атомы, сверхпроводящие цепи и другие.
Исследование выполнено научными сотрудниками НИТУ МИСиС и РКЦ при поддержке гранта РНФ 19-71-10091. Статья опубликована в научном журнале Entropy.
2022: Российские ученые испытали сверхпроводящие низкочастотные кубиты
Российские физики лаборатории «Сверхпроводящие метаматериалы» Университета МИСИС и МГТУ им. Н.Э. Баумана одни из первых в мире смогли реализовать двухкубитную операцию, используя сверхпроводящие флаксониевые кубиты — альтернативу популярным трансмонам. Особенность флаксониумов состоит в более продолжительном жизненном цикле и большей точности операций, что дает возможность выполнять более длинные алгоритмы. Об этом TAdviser 15 ноября 2022 года сообщили представители Университета МИСИС.
Как известно, одна из основных проблем разработки универсального квантового вычислителя заключается в кубитах, а именно – из каких квантовых объектов лучше всего делать процессоры для квантовых компьютеров: электронов, фотонов, ионов, сверхпроводников или других кандидатов в «квантовые транзисторы». За последние десять лет сверхпроводниковые кубиты получили огромный толчок в развитии. При этом самыми коммерчески успешными сверхпроводящими кубитами по состоянию на 2022 год являются трансмоны, которые активно исследуются и используются в квантовых разработках Google, IBM и других мировых лабораторий, рассказали в НИТУ МИСИС.
По словам ученых, главная задача кубита – целостно хранить и обрабатывать информацию. Случайный шум и даже просто наблюдение способны привести к потере или изменению данных. Для устойчивой работы сверхпроводниковых кубитов часто необходима чрезвычайно низкая температура окружающей среды – близкая к нулю Кельвин, что в сотни раз холоднее температуры открытого космоса.
В ходе испытаний для защиты кубитов от шума исследователи добавили в цепь супериндуктор — сверхпроводниковый элемент с высоким уровнем сопротивления переменному току, который представляет собой цепочку из 40 джозефсоновских контактов — структур из двух сверхпроводников, разделенных тонким слоем диэлектрика.
В качестве элемента, преобразующего входные состояния кубитов на выходные, ученые использовали высокоточные двухкубитные вентили fSim и CZ. А для того, чтобы привести кубиты в резонанс друг с другом применялась параметрическая модуляция потока одного из кубитов системы. Как отметили авторы исследования, благодаря перестраиваемому элементу связи одновременно удалось не только получить точность двухкубитных операций выше 99,22%, но и подавить остаточное ZZ-взаимодействие между кубитами, что позволило выполнять параллельные однокубитные операции с точностью 99,97%.
В целом, по мнению ученых, полученные результаты открывают многообещающий подход к отказоустойчивым квантовым вычислениям с низкочастотными кубитами, которые благодаря своим улучшенным когерентным свойствам могут стать конкурентоспособной альтернативой широко используемым сверхпроводниковым процессорам на кубитах-трансмонах.
В дальнейшем планируется продолжать исследования с вычислениями на базе кубитов-флаксониумов, а именно: оптимизировать систему управления кубитами, улучшить показатели считывания и приступить к разработке многокубитных систем на их основе.
Статья об исследовании, которое приближает создание квантового компьютера к реальности, опубликована в npj Quantum Information – Nature.
2013: В России измерили состояние кубита
В июне 2013 года стало известно, что специалисты университетской лаборатории МИСиС в сотрудничестве с Российским квантовым центром (РКЦ) первыми в России измерили состояние кубита. Команда исследователей под руководством члена научного совета РКЦ профессора Алексея Устинова провела эксперимент по измерению состояния сверхпроводящего кубита. Ученым удалось наблюдать периодически изменяющийся сигнал кубита, а также измерить его резонансную частоту.
Сверхпроводящие кубиты представляют собой колечки сверхпроводника диаметром несколько микрон. В некоторых местах колечек есть разрывы нанометровых размеров — их называют джозефсоновскими переходами. Сверхпроводящие колечки охлаждают до очень низкой температуры с помощью смеси жидких гелия-3 и гелия-4 и помещают в сверхточно настроенное слабое магнитное поле. В результате они приобретают квантовые свойства, сходные со свойствами атомарных спинов.
Российские ученые смогли создать экспериментальный чип с 7-ю сверхпроводящими кубитами, помещенными в микроволновые резонаторы. Взаимодействие со сверхпроводящим кубитом влияет на спектр микроволнового излучения, что позволяет судить о текущем состоянии кубита, не нарушая это состояние, то есть обойти проблему декогеренции. Самый стабильный из 7 кубитов подвергался измерениям в МИСиС.
Квантовые компьютеры: без математики и философии
В этой статье я разберу по косточкам все тайны квантовых компьютеров: что такое суперпозиция (бесполезна) и запутанность (интересный эффект), могут ли они заменить обычные компьютеры (нет) и могут ли они взломать RSA (нет). При этом я не буду упоминать волновую функцию и столь раздражающих Bob и Alice, которых вы могли встречать в других статьях про квантовые машины.
Первое и самое главное, что нужно знать — квантовые компьютеры не имеют ничего общего с обычными. Квантовые компьютеры по своей природе — аналоговые, там нет бинарных операций. Вероятно, вы уже слышали про Кубиты, что у них есть состояние 0, 1 и 0-1 одновременно, и благодаря этому вычисления выполняются очень быстро: это заблуждение. Кубит — это магнит (обычно атом или электрон), подвешенный в пространстве, который может вращаться по всем трем осям. Собственно, вращение магнита в пространстве — это и есть операции квантового компьютера. Почему это может ускорить вычисления? Было очень сложно найти ответ, но самые стойкие читатели увидят его в конце статьи. Начнем разоблачения.
Суперпозиция
Прежде чем говорить про волшебное состояние 0-1 (суперпозиция), сначала разберемся, как положение магнита в 3D вообще становится нулем и единицей. При создании квантового компьютера принимается решение, что если полюс магнита N (на картинках ниже — синий) смотрит вверх — то это значение ноль, если вниз — единица. Когда запускается квантовая программа, все кубиты с помощью внешнего магнитного поля выстраиваются в ноль (вверх). После завершения квантовой программы (серии вращений кубитов) надо получить конечное значение кубитов (выполнить Измерение), но как это сделать? Кубиты крайне маленькие и нестабильные, на них негативно влияет тепловое излучение (поэтому их сильно охлаждают) и космические лучи. На кубит нельзя просто посмотреть и сказать, где у него сейчас полюс N. Измерение выполняется опосредованно, например, можно к кубиту снизу и сверху поднести магниты с полюсом N.
Если полюс кубита N был направлен вверх, то кубит упадет вниз, и как раз это падение можно зарегистрировать. После этого состояние кубита измерено (Ноль) и он физически больше непригоден для дальнейшего использования в квантовой программе. Это лишь иллюстративный пример, в каждом квантовом компьютере измерение выполняется своими методами и очень сложно найти описание — как именно, но суть остается та же.
Теперь самое интересное, вспоминаем, что наш магнит может вращаться в любом направлении, давайте положим его на бок? Именно с этого начинаются все квантовые алгоритмы.
Браво, мы перевели кубит в состояние суперпозиции, знаменитое «0-1 одновременно». При попытке измерить такой кубит он будет падать вверх или вниз с вероятностью примерно 50% (зависит от точности построения квантового компьютера). Как вы видите, состояние кубита более чем конкретное, мы его только что просто повернули на 90 o . Заявления о том, что он в нуле и единице одновременно (или мечется между ними) выглядят странно, ведь при измерении всегда сработает только один сенсор. Поворот еще на 90 o выводит кубит из волшебного состояния.
Еще один важный момент: если кубит из вертикального положения повернуть не на 90 o , а только на пару градусов, то при измерении он с очень высокой вероятностью будет падать на «Сенсор 0», а в редких случаях на «Сенсор 1». Это доказано опытами, я проверял это сам (IBM дает бесплатный доступ), одиночный атом ведет себя сложнее, чем обычный магнит.
Любое отклонение от вертикали приводит к вероятности измерить единицу вместо нуля. Соответственно, исходную инициализацию кубитов и все вращения кубитов надо делать очень точно, защищать кубиты от внешнего воздействия надо очень надежно, иначе вы будете получать ошибку вычислений. Современные квантовые компьютеры имеют крайне низкую точность, это их большая проблема.
Теперь рассмотрим очень популярное, но ложное утверждение, что суперпозиция ускоряет вычисления. Все квантовые алгоритмы начинаются с перевода группы кубитов (регистра) в состояние суперпозиции (укладывания магнитов на бок), начиная с этого момента официальная наука заявляет нам, что каждый кубит хранит в себе 0-1 одновременно, два кубита хранят 0-3 одновременно, восемь кубитов 0-255 одновременно и т.д. Любое математическое действие над этой группой кубитов будет выполнено сразу для всех чисел, хранимых кубитами.
Пример: у нас есть две группы по 32 кубита (два регистра памяти), мы хотим посчитать сумму чисел из этих двух регистров. Выполнив сложение один раз мы получаем абсолютно все возможные комбинации сумм чисел, которые только можно разместить в двух регистрах по 32 бита, т.е. было выполнено около 18 квинтиллионов операций сложения за одну физическую операцию. Звучит очень круто, но есть подвох.
После завершения квантового алгоритма нам надо как-то вытащить результат вычисления, да вот беда — квантовый компьютер ни за что не отдаст нам все 18 квинтиллионов результатов за один раз. После измерения он вернет только один из них, причем рандомно. Процесс измерения разрушает кубиты, и чтобы получить еще один результат, нам придется выполнить операцию заново. Чтобы вытащить из квантовой машины все 18 квинтиллионов результатов придется запустить его как минимум 18 квинтиллионов раз. Звучит как фуфло.
Что там со взломом паролей? Аналогично, чтобы хэш-сумму перевести в пароль нужно запустить квантовую программу очень-очень много раз (как и на классическом компьютере). Таким образом, суперпозиция (даже если она реальна) сама по себе не имеет никакого эффекта на производительность квантовой машины.
Запутанность
Квантовая запутанность — второй кит, на котором держится квантовый компьютер, и это действительно любопытный эффект, который современная наука пока не может объяснить. Но мы пойдем издалека. Давайте взглянем на типичный кусок исходного кода для традиционного компьютера:
if (n > 50) then n = 50
Эту строчку проблематично выполнить на квантовом компьютере, т.к. после операции (n>50) кубиты переменной n будут тут же физически разрушены (ведь их надо было измерить для операции сравнения), а эта переменная нужна нам дальше по коду. Условные переходы (как и циклы) недоступны для квантовых компьютеров, как они тогда вообще выживают? Одна операция IF все же может быть выполнена, без проведения измерения: контролируемое NOT (CNOT), это аналог классической операции XOR. В этой операции участвуют два кубита, контролирующий и контролируемый:
- если полюс N контролирующего кубита направлен вниз (значение 1), то контролируемый кубит вращается на 180 градусов
- если полюс N контролирующего кубита направлен вверх (значение 0), то контролируемый кубит не изменяется
Данная операция позволяет выполнять банальное сложение целых чисел для двух регистров кубитов. Чтобы выполнить эту операцию два кубита кратковременно подносят поближе друг к другу, после чего выполняют серию отдельных вращений. Измерения не требуются, т.е. с кубитами можно работать дальше. После этой операции кубиты запутаны. Как это проявляется? Начнем с банального:
После того, как мы запутали кубиты, они становятся зависимыми друг от друга. Если кубит Q1 был измерен как Единица, то кубит Q2 будет измерен как Ноль. Но этот случай очевиден и не интересен, давайте перед CNOT уложим кубиты на бок:
Если контролирующий кубит лежит на боку, то контролируемый будет либо повернут на 180 градусов с вероятностью 50%, либо останется в прежнем состоянии. Точное итоговое положение кубитов в 3D пространстве после такой операции не известно (они якобы сразу во многих состояниях), ведь на кубиты нельзя посмотреть непосредственно. Но если запутанные кубиты измерить, то Q1 будет рандомно падать на сенсор 0 или 1, а Q2 будет всегда падать на противоположный сенсор.
Почему так происходит никто не знает. По логике, оба кубита лежат на боку, после операции CNOT они оба должны рандомно падать на оба сенсора, без какой-либо зависимости. По факту же прослеживается четкая связь при измерении (с некоторой погрешностью, система все-таки аналоговая). На этот счет есть две теории:
- Официальная наука говорит, что кубиты обмениваются информацией между собой (неизвестно как, но мгновенно, больше скорости света). Когда первый кубит измеряют (бьют об сенсор), он сообщает второму кубиту куда именно упал, а тот его запоминает и при измерении ударится о противоположный сенсор. Эта теория выглядит весьма странно, но здесь надо понимать, что официальная наука цепко держится за принцип суперпозиции, что кубиты находятся в состоянии 0-1 одновременно: при измерении первого кубита второй не может больше оставаться в 0-1, ему надо срочно определиться с ориентацией.
- Теория скрытых переменных: она говорит, что при взаимодействии кубиты сразу договариваются, кто на какой сенсор упадет, происходит это за счет изменения физического параметра кубита, который науке пока не известен. Эта теория выглядит более логичной, здесь уже не требуются сверхсветовые взаимодействия. Но данная теория отрицает наличие принципа суперпозиции, который является Святым Граалем для современной науки, поэтому всерьез эту теорию не прорабатывают.
На мой взгляд само явление Запутанности является главным доказательством, что Суперпозиции не существует, но я не физик-теоретик, поэтому оставим эту тему. В конце концов когда-то официальная наука высмеивала теорию движения литосферных плит, но в конце концов ребята во всем разобрались.
Пара заключительных моментов про запутанность:
- Запутать можно сразу много кубитов, и это обычное дело для квантовых компьютеров, для этого надо прогнать CNOT поочередно для нескольких кубитов.
- После операции CNOT контролирующий кубит на самом деле тоже меняет свою ориентацию в 3D пространстве. Его полюс N не двигается вверх-вниз, но сам кубит вращается вокруг оси Z, это явление называется Phase Kickback и оно имеет огромное значение для квантовых алгоритмов, именно оно дает ускорение вычислений. Об этом мы поговорим ниже.
- Если после запутывания один из кубитов с помощью внешнего магнитного поля перевести в состояние Ноль (повторить первичную инициализацию), то это никак не повлияет на второй кубит, состояние запутанности будет разорвано. Т.е. обмен информацией на сверхсветовой скорости нельзя обеспечить за счет эффекта запутывания.
- Запутанные частицы иногда сравнивают с носками: я надеваю один на правую ногу, второй автоматически становится левым. Это некорректное сравнение, запутанные частицы больше похожи на две монетки, стоящие на боку. Если одна из них упадет на Орла, то вторая точно упадет на Решко, даже если прошло несколько часов.
Чего не могут квантовые компьютеры
Квантовые компьютеры довольно медленные, типичная рабочая частота 100 МГц, но это поправимо. Они также довольно маленькие, 66 кубитов считается мега круто (можно разместить в памяти пару int), но это тоже поправимо. На физическом уровне квантовые компьютеры не поддерживают (и возможно, никогда не поддержат):
- условные переходы и циклы (об этом я писал ранее);
- умножение и деление;
- возведение в степень и тригонометрию.
Все взаимодействие между кубитами сводится к операции CNOT, на которой далеко не уедешь. Но если они такие ограниченные, то почему вокруг них столько шума? При решении задачи в лоб никакого превосходства над классическими компьютерами не будет, но есть очень узкий перечень алгоритмов, где квантовый компьютер может себя проявить. Напомню, каждая квантовая операция — это вращение одного или двух кубитов, для ее выполнения достаточно одного кратковременного импульса. С другой стороны для моделирования вращения магнита на классическом компьютере нужно вычислить много синусов и косинусов. Примерно на этой особенности и строятся эффективные квантовые алгоритмы.
Алгоритм Шора
Алгоритмом Шора давно пугают интернеты, т.к. он теоретически может довольно быстро взломать RSA. Сама задача взлома сводится к поиску двух простых чисел, из которых состоит открытый ключ RSA, т.е. надо найти два делителя для очень большого числа (порядка 512 бит для RSA-512). Простой перебор на классическом или квантовом компьютере займет очень много времени, и как мы видели выше, принцип суперпозиции тут не спасает.
На самом деле есть два Алгоритма Шора, классический и с квантовым дополнением, начнем с первого. Математики определили, что задачу простого перебора можно заменить на следующее уравнение:
- a — число 2 или 3 (на самом деле любое число, но 2 или 3 точно подойдут, какое именно из них — заранее нельзя сказать);
- N — число, для которого ищем делители (условно — открытый ключ RSA);
- mod — операция, которая возвращает остаток от целочисленного деления;
- x — вспомогательное число, найдя его (простым перебором), мы быстро найдем делители числа N. Искомое x должно быть больше нуля, четным и минимальным из всех возможных.
Математики определили, что количество шагов по перебору числа x будет существенно меньше, чем простой перебор чисел a и b по формуле a*b=N. Я проверил как это работает, загнал формулы в Excel и нашел делители для числа 15: достаточно перебрать всего два числа x, проигнорировав 0 и все нечетные:
Этот эффект должен быть более выраженным для больших чисел, но есть подвох. Опытный глаз конечно же заметил операцию возведения в степень, а также поиск остатка от деления. Шагов перебора может и стало меньше, но каждый шаг сам по себе стал очень сложным, и их сложность будет расти экспоненциально для больших чисел N. Также вы уже наверняка задаетесь вопросом, причем тут квантовые компьютеры, если и в Excel все получилось?
Квантовый алгоритм Шора
Квантовый алгоритм Шора также начинается с вычисления формулы a x mod(N), но тут возникает очень много проблем:
- возведение в степень, умножение и деление (в том числе целочисленное с остатком) не поддерживаются на аппаратном уровне;
- количество кубитов сильно ограничено и держать в памяти результат a x проблематично;
- циклы не поддерживаются, значит перебор x надо делать без их участия.
Ребята не стали отчаиваться и придумали набор костылей. Число x на вход квантовой программы подается как рандомное. Если быть точнее, то набор кубитов (регистр) для хранения числа x переводится в суперпозицию (кубиты укладываются на бок). Начиная с этого момента официально заявляется, что a x mod(N) будет выполнена сразу для всех возможных чисел x за одну операцию. Как мы видели выше, толку от этого мало, т.к. измерить мы сможем только один результат из всех, причем рандомный.
Далее, сама формула a x mod(N) заменяется на очень странный код (показана симуляция квантового компьютера):
X = Register('X', 8) F = Register('F', 4) X.H() F[3].X() for i in range(8): for j in range(2**i): Fredkin(X[i], F[0], F[1]) Fredkin(X[i], F[1], F[2]) Fredkin(X[i], F[2], F[3])
- функция Register инициализирует указанное число кубитов (8 и 4), на выходе регистр кубитов, в которых можно хранить числа, по умолчанию сохраняется 0х0 (все полюса N направлены вверх);
- метод H — Hadamard gate, укладывает кубиты на бок (переводит в суперпозицию);
- метод X поворачивает кубит на 180 o (аналог бинарного NOT);
- функция Fredkin стандартная для квантовых вычислений, она меняет местами значения двух кубитов, если первый параметр (контролирующий) установлен в единицу. Функция сводится к 8 операциям CNOT и 9 одиночным вращениям кубитов;
- входной регистр кубитов X хранит число x;
- регистр F будет хранить результат вычисления a x mod(N).
Полный исходный код доступен в моем репозитории.
Вы наверное очень удивлены, как это вообще может работать? Это костыль, который позволяет выполнять формулу a x mod(N) для a=2 и N=15. Число x может быть любым. Есть отдельные методики, которые позволяют подобрать перечень вращений кубитов для любых чисел a и N. Как это работает, я не стал разбираться, поскольку документация на квантовые алгоритмы традиционно крайне низкого качества, но мои собственные опыты подтвердили, что вычисления выполняются корректно.
Соответственно, если мы хотим взломать какой-то ключ RSA-512, то сначала для этого конкретного ключа мы должны составить схему, которая будет включать в себя очень много вращений. Но сколько раз мы должны запустить такую схему? Вы обратили внимание на два вложенных цикла в исходном коде выше? Для числа N=15 схема запускается 255 раз, для N=21 — 511 раз, для пока недостижимого квантовым компьютерам N=35 будет 2047 запусков. Количество операций резко возрастает, в чем же профит квантового компьютера?
Quantum Phase Estimation
Поздравляю всех самых терпеливых читателей, пройдя долгий путь непонимания мы добрались до самой сути квантовых компьютеров. Когда мы вычисляем формулу F=a x mod(N) на обычном компьютере, мы ждем появления значения F=1, чтобы объявить о взломе ключа RSA. Но когда мы работаем на квантовой машине, нам на самом деле не важно, что по итогу хранится в регистре F, решение задачи будет хранится во входном регистре X.
В классическом компьютере в операторе XOR (аналог CNOT) значение контролирующей переменной не меняется, но напомню, что когда в квантовой машине мы выполняем операцию CNOT, она меняет оба кубита:
- полюс N контролируемого кубита двигается вверх-вниз, в зависимости от состояния контролирующего;
- полюс N контролирующего кубита не двигается вверх-вниз, но сам кубит вращается по оси Z.
Отклонения кубита по оси Z называется фазой. За время выполнения квантовой программы все кубиты накапливают некоторое изменение фазы. Математики доказали, что, измерив итоговую фазу всех кубитов во входном регистре, можно с очень высокой вероятностью найти делители числа N (взломать RSA), даже если в F получилась не единица. Для RSA-512 нужно всего порядка 2000 запусков алгоритма на квантовом компьютере. Но есть подвох. Даже два.
Первая проблема заключается в том, что надо как-то суметь измерить фазу. Для этого используется алгоритм QFE (Quantum Phase Estimation), который требует дополнительных вращений кубитов на очень маленькие углы поворота. Для N=15 нужно вращать кубиты на 1.4 o , для N=35 повороты будут уже 0.175 o . Для RSA-512 нужно повернуть кубит на ничтожные 180/2 1022 градуса, сделав это 1022 раза. Кубиты — это аналоговая система, если ошибиться с углом поворота — на выходе мы получим ошибку. Современные квантовые компьютеры не могут справиться с числом N=35, им уже на этом этапе не хватает точности поворотов. Но это еще не так страшно, совсем ничтожными поворотами можно просто пренебречь, почти не потеряв точность всего алгоритма.
Вторая проблема заключается в вычислении a x mod(N). Да, для RSA-512 надо вычислить ее всего лишь 2000 раз, но посмотрите еще раз на два вложенных цикла: одно такое вычисление — это более 2 1022 последовательных вращений кубитов. Это более чем фуфло. Квантовые компьютеры не способны взломать RSA, даже если они вырастут до миллиона кубитов. Есть большое количество научных статей, которые рассказывают нам, как им удалось оптимизировать эту часть и выполнить ее в сотни раз быстрее, но они всегда скромно умалчивают, сколько именно операций требуется, когда N = 2 512 .
Симуляторы квантовых компьютеров
Симуляторы квантовых компьютеров работают существенно медленнее своих реальных собратьев. Происходит это потому, что симуляторы делают свою работу гораздо честнее. Когда в симуляторе вы создаете регистр из 8 кубитов, то в памяти сохраняются все возможные значения для этих кубитов (создается массив на 256 ячеек). Если вы создадите два регистра по 8 бит и выполните операцию A+B, то симулятор посчитает и сохранит в памяти все возможные комбинации сложений (создаст массив на 65536 ячеек). Это будет существенно дольше, чем единичная операция, но после этого симулятор может вернуть вам все эти значения, не уничтожая данные при каждом «измерении».
Чтобы получить все варианты сложения на настоящем квантовом компьютере, вы будете запускать его как минимум 65536 раз (результат возвращается рандомно, могут быть повторы), и в целом, это займет даже больше времени, чем на симуляторе.
Но если кубиты — это просто магниты в 3D пространстве, можно ли создать симулятор, который вращает их в виртуальной реальности? Я попытался и создал библиотеку FastQubit. Большая часть операций действительно успешно работает (даже состояния Белла), и такой симулятор обладает существенным превосходством над обычным квантовым компьютером:
- кубитов может быть много и они совершенно стабильны, никаких ошибок;
- на кубиты можно посмотреть в любой момент времени, определить точное положение в 3D, при этом не разрушая их.
Но есть подвох. Phase Kickback в моей библиотеке работает не верно:
Q[0].H() Q[1].X() Q[0].P_pi(8) Q[1].P_pi(8) CNOT(Q[0], Q[1]) Q[1].P_pi(-8) CNOT(Q[0], Q[1])
Вот эта цепочка операций должна по итогу сдвинуть фазу кубита Q[0] на 45 o , но в моем случае сдвиг выполнялся на 90 o . Дело в том, что точное положение кубитов в 3D после первой операции CNOT науке не известно, тут обычно приплетают суперпозицию, что кубиты сразу много где. Я воспользовался документацией на квантовые операции, и сделал повороты ровно так, как они там описаны. Но нет, на самом деле никто не знает, какие повороты выполняются на самом деле.
Если вы заставите этот короткий код работать верно, то можете смело претендовать на Нобелевскую премию. Но не пытайтесь костылить: вы конечно можете добавить хак, который доворачивает фазу на нужный угол при определенных условиях, но это перестанет работать, когда в квантовую программу добавят запутанность сразу между несколькими кубитами.
Итоги
Документация на квантовые компьютеры максимально пафосная, даже элементарные вещи оборачиваются сложными формулами. Я потратил недели, чтобы разобраться, что на самом деле в них скрыто. Статьи в новостях и блогах наоборот крайне поверхностные, философские, и очень часто содержат ложную информацию. Никто и никогда не публикует цифру, сколько операций нужно выполнить, чтобы взломать RSA-512 (причем, он не самый стойкий), вместо этого вам покажут несколько формул вычисления сложности алгоритма, сделав это максимально непонятно.
Я не призываю немедленно прекратить финансирование всех программ по квантовым компьютерам, это фундаментальные исследования, которые могут принести неожиданные полезные результаты в других областях. Но необходимо прекратить публиковать страшилки про пост-квантовую эру.
Квантовые компьютеры и квантовая связь
Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами (квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии.
Первые квантовые компьютеры напоминают старые громоздкие вычислительные системы, они поставляются в больших шкафах высотой в 10 футов (около 3 м) и объёмом в 700 куб. футов (около 20 куб. м). При этом размеры самого квантового чипа достаточно небольшие и сопоставимы с размерами ногтя большого пальца.
Большую часть остального пространства компьютера занимают системы охлаждения и экранирования. Они предназначены для создания необходимых условия функционирования компьютера и устранения внешних воздействий. Благодаря применению системы охлаждения на базе жидкого гелия температура квантового чипа находится на уровне −273оС.
Что такое квантовый компьютер?
Квантовый компьютер — средство вычислительной техники, где в основе работы центрального процессора лежат законы квантовой механики. Такой компьютер принципиально отличается от традиционных ПК, работающих на основе кремниевых чипов.
Это устройство применяет для вычисления не классические алгоритмы, а процессы квантовой природы — квантовые алгоритмы, использующие эффекты квантовой механики, такие как квантовый параллелизм и квантовая запутанность.
Базой для вычислений такого типа служит кубит — система, в которой число частиц аналогично импульсу, а фазовая переменная (энергетическое состояние) – координате. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается.
На рисунке элементарная схема фазового кубита и его фотография. Источник: t-z-n.ru
В отличие от обычного бита, способного иметь только значения 1 и 0, квантовый бит (кубит) может находиться в суперпозиции этих состояний, то есть одновременно в значении 1 и 0. На практике кубит может существовать в самых разных комбинациях этих значений, что в перспективе позволит создавать сверхбыстродействующие компьютеры. Кубиты станут строительными элементами будущих квантовых компьютеров, способных решать задачи, практически недоступные классическим цифровым компьютерам. Для выполнения вычислений на квантовом компьютере необходимо привести во взаимодействие несколько кубитов, причем таким образом, чтобы они образовали единую квантовую систему. Затем этой системе надо позволить развиваться по законам квантовой механики и спустя определенное время выяснить, в какое состояние она пришла.
С ростом числа объединенных кубитов, вычислительная мощность такой квантовой системы экспоненциально растет. Теоретически это позволяет квантовому компьютеру справляться с задачами, на которые обычному цифровому компьютеру понадобятся миллионы лет. Например, давно известен так называемый алгоритм Шора, позволяющий быстро раскладывать большие числа на простые множители (задача, необходимая для взлома современных шифров). Обычные компьютеры решают эту задачу перебором возможных делителей, поэтому длинные числа современные компьютеры могут обрабатывать годами. Квантовый компьютер справился бы с такой задачей за считанные минуты и даже секунды, в зависимости от производительности.
Почему квантовые компьютеры имеют значение?
Объем ежедневно создаваемых данных просто огромен, и современные компьютеры уже не всегда успевают за такими объемами. Современные суперкомпьютеры по-прежнему слишком медленны для выполнения некоторых наиболее важных научных задач, например, тестирование воздействия новых лекарственных препаратов на молекулярном уровне.
Благодаря возможности выполнять очень сложные вычисления значительно быстрее, или даже моделировать эти лекарства на молекулярном уровне, квантовые компьютеры способны предоставить такой необходимый рост производительности и скорости. Большинство специалистов согласны с тем, что квантовые компьютеры – это наш шанс справиться с вызовами 21 века.
Вторая квантовая революция
Первая квантовая революция произошла во второй половине XX века и привела к появлению лазеров, транзисторов, ядерного оружия, а впоследствии – мобильной телефонной связи и интернета. Технологии первой квантовой революции применяются в компьютерах, мобильных телефонах, планшетах, цифровых камерах, системах связи, светодиодных лампах, МРТ-сканерах, сканирующих туннельных микроскопах и т.д.
Объем рынка соответствующей продукции в мире составляет $3 трлн в год. При этом «закон Мура», согласно одному из изложений которого, производительность процессоров должна удваиваться каждые 18 месяцев, больше не работает. Российский рынок мобильных приложений для бизнеса и госсектора: крупнейшие игроки, тенденции и перспективы. Обзор TAdviser
С конца XX века мир находится на пороге второй квантовой революции. В первой квантовой революции технологии и приборы строились на управлении коллективными квантовыми явлениями.
Во второй квантовой революции технологии будут строиться на способности управлять сложными квантовыми системами на уровне отдельных частиц, например, атомов и фотонов. Технологии, основанные именно на таком высоком уровне контроля над индивидуальными квантовыми объектами, принято объединять термином квантовые технологии.
Научные исследования квантовых вычислений
Мировой рынок квантовых компьютеров
Квантовые компьютеры и сети в России
Российский квантовый центр (РКЦ)
Квантовая коммуникационная платформа цифровой экономики
Квантовый компьютер «Росатома»
Квантовые технологии в РЖД
Квантовые компьютеры в США
Квантовые компьютеры IBM
Квантовые вычисления в медицине
Квантовый интернет
Квантовая и постквантовая криптография
- Квантовая криптография
- Постквантовая криптография
Квантовая физика
2023
Создан квантовый компьютер с рекордными 1225 кубитами
24 октября 2023 года стартап Atom Computing объявил о создании первого в отрасли квантового компьютера с более чем 1000 кубитов. Компания заявляет, что это знаковое событие, поскольку с появлением подобных систем универсальные квантовые компьютеры начнут трансформировать отрасль высокопроизводительных вычислений (НРС). Подробнее здесь.
В Китае создали фотонный квантовый компьютер, за долю секунды решающий задачи, с которыми суперкомпьютеры справятся за 20 млрд лет
11 октября 2023 года исследователи из Университета науки и технологий Китая в Хэфэе (городской округ в провинции Аньхой) сообщили о разработке фотонного квантового компьютера JiuZhang 3. Утверждается, что система способна решать сверхсложные математические задачи за миллионные доли секунды, тогда как самому мощному в мире суперкомпьютеру на это потребуются миллиарды лет. Подробнее здесь.
В Китае запустили крупнейшую платформу облачных квантовых вычислений
19 августа 2023 года начала работу крупнейшая в Китае платформа облачных квантовых вычислений. Предполагается, что система позволит ускорить решение ресурсоемких задач в различных областях, включая аэрокосмическую промышленность и транспортный сектор. Подробнее здесь.
Лазерный чип может стать ключом к созданию масштабируемой квантовой памяти
Квантовая память является важной составляющей для создания квантовых сетей, совместимых с оптоволоконными линиями связи. Они нужны для качественной связи, быстрой передачи данных, а также для эффективных вычислений и много чего еще. Инженерам и ИТ-специалистам пока не удалось воссоздать такую сеть в больших размерах. Об этом стало известно 1 августа 2023 года.
Группа исследователей под руководством Сюэин Чжан описала, как обеспечить многомодовое хранение одиночного фотона на чипе, написанном лазером. Разработка позволит значительно увеличить скорость передачи информации по сравнению с одномодовым хранением (одномодовыми квантовыми каналами связи).
Устройство хранения на основе ниобата лития, легированного ионами эрбия, интегрировано с оптоволоконными компонентами телеком диапазона. Это открывает путь для создания квантовых сетей на базе интегральных фотонных схем.
Чжан и коллеги спроектировали волновод, напрямую связанный с одномодовым волокном. Для совместимости с оптоволоконной связью использовали оптические коллиматоры. На чипе реализовали систему квантовой памяти на основе атомно-частотного гребня шириной 4 ГГц.
В экспериментах по многомодовому хранению генерировали связанные пары фотонов в волноводе ниобата лития. Для одномодового хранения использовали одиночный лазерный импульс.
Для создания атомно-частотного гребня ионы эрбия внедряли в периодическую структуру с интервалом зубьев 5 МГц.
Таким образом удалось продемонстрировать новый способ хранения неклассического света с большой временной полосой пропускания. Ученые создали квантовую память на чипе со временем хранения целых 200 наносекунд.
Результаты эксперимента помогут усовершенствовать высокоскоростные квантовые сети. При этом понадобятся улучшения для создания полноценного устройства, в частности интеграция источников фотонов с памятью [1] .
Европа не готова к квантовому апокалипсису: новый доклад раскрывает все слабости ЕС в части кибербезопасности
17 июля 2023 года обнародован перечень рекомендаций для Европейского союза по обеспечению защиты государств-членов от кибератак нового типа с использованием квантовых вычислений. Подробнее здесь.
Россия успешно запустила спутник для создания систем квантово-защищенной спутниковой связи
27 июня 2023 года Россия успешно запустила спутник для создания систем квантово-защищенной спутниковой связи. Речь идет о разработке НИТУ «МИСиС» и квантового стартапа QSpace Technologies.Подробнее здесь.
Разработано устройство, позволяющее хранить квантовую информацию в звуковых волнах
22 июня 2023 года американские учёные из Калифорнийского технологического института сообщили о разработке новой технологии хранения информации в квантовых компьютерах. Речь идёт о переводе электрических квантовых состояний в звуковые волны. Подробнее здесь.
В Китае разработали квантовый компьютер, который в 180 млн раз быстрее справляется с ИИ-задачами, чем суперкомпьютеры
В начале июня 2023 года ученые из Университета науки и технологий Китая заявили, что они достигли еще одной вехи в квантовых вычислениях, заявив, что их устройство Jiuzhang может выполнять задачи, обычно используемые в ИИ, в 180 млн раз быстрее, чем самый мощный в мире суперкомпьютер. Подробнее здесь.
В Китае представили систему квантового распределения ключей на базе дронов
В начале июня 2023 года ученые Нанкинского университета во главе с Тянь Сяохуэй разработали новый подход, который позволит повысить дальность работы защищенной квантовой связи, а также сделает ее более мобильной и доступной вне стен городов. Так, ученые создали компактную установку для квантового распределения ключей, которую можно установить на любой дрон.
Квантовая связь на основе дронов имеет потенциал для реализации мобильной квантовой сети, и распределение запутанности было продемонстрировано с помощью одного и двух дронов. Тянь Сяохуэй сообщил о первом квантовом распределении ключей (QKD) на основе дронов, со средней безопасной скоростью передачи ключа со средней безопасной скоростью более 8 кГц, используя протокол BB84 с обманным состоянием и поляризационным кодированием.
В Китае представили систему квантового распределения ключей на базе дронов
Компактная система сбора, наведения и отслеживания (APT) и модули QKD были разработаны и установлены на самодельный октокоптер, взлетный вес которого не превышает 30 кг. Ученые Нанкинского университета показали, как устанавливается надежная связь между летающим октокоптером и наземной станцией, расположенной на расстоянии 200 м, и QKD в реальном времени выполняется в течение 400 сек.
Проделанное исследование ученых из Нанкинского университета показывает потенциал квантовой связи на основе дронов для будущих мобильных квантовых сетей во всем мире. В связи с тем, что повысить дальность передачи квантовой информации можно, обмениваясь данными не через оптоволоконные кабели, а через спутники связи или при помощи атмосферных лазеров. [2]
Ученые из Университета Миннесоты в США создали суперпроводящий диод
8 июня 2023 года стало известно о том, что команда ученых из Университета Миннесоты в США создала суперпроводящий диод, который может помочь масштабировать квантовые компьютеры для промышленного использования и повысить производительность систем искусственного интеллекта. По сравнению с другими суперпроводящими диодами, устройство исследователей более энергоэффективно, может обрабатывать несколько электрических сигналов одновременно и содержит ряд затворов для управления потоком энергии, что ранее никогда не внедрялось в суперпроводящий диодах. Подробнее здесь.
Госоператор связи China Telecom создал компанию для развития квантовых вычислений и инвестировал в нее $422 млн
30 мая 2023 года китайсий государственный телеком-оператор China Telecom сообщил о формировании компании в сфере квантовых информационных технологий — Quantum Information Technology Group. Инвестиции в проект составили 3 млрд юаней (приблизительно $422 млн по курсу на 31 мая 2023-го). Подробнее здесь.
Rolls-Royce начала использовать квантовые вычисления при разработке авиадвигателей
21 мая 2023 года компании Nvidia, Rolls-Royce и Classiq объявили о прорыве в области квантовых вычислений, который, как ожидается, приведёт к значительному повышению эффективности реактивных двигателей. Подробнее здесь.
В России разработаны новые типы оптических волокон, открывающие большие возможности для квантовой связи
Холдинг «Швабе» и ученые Поволжского государственного университета телекоммуникаций и информатики (ПГУТИ) сообщили о разработке новых классов оптических волокон. Материалы, обеспечивающие надежное соединение при создании телекоммуникационных сетей, используются в разработке высокотехнологичных оптических устройств, сообщила пресс-служба «Ростеха» («Швабе» входит в эту госкорпорацию) в марте 2023 года. Подробнее здесь.
Физики научились управлять квантовым светом. Это открывает большие возможности для медвизуализации и квантовых компьютеров
20 марта 2023 года команда австралийских и швейцарских учёных сообщила о том, что им впервые удалось продемонстрировать возможность выполнения манипуляций с небольшим количеством взаимодействующих фотонов. Это открывает принципиально новые возможности для создания квантовых компьютеров и других устройств, например, систем медицинской визуализации.
В работах приняли участие сотрудники Университета Сиднея и Базельского университета. Исследователям удалось зафиксировать стимулированное излучение одиночных фотонов. В частности, учёные смогли измерить непосредственную временную задержку между одним фотоном и парой связанных фотонов, рассеянных на одной квантовой точке. Физики говорят, что это открывает двери для манипулирования тем, что можно назвать «квантовым светом».
Ученым удалось сманипулировать небольшое количество взаимодействующих фотонов
По заявлениям специалистов, созданная ими система индуцирует настолько сильные взаимодействия между фотонами, что можно наблюдать разницу между одной и двумя частицами. В результате, с применением квантового света можно проводить более точные измерения с повышенным разрешением, используя меньшее количество фотонов. Такой подход будет востребован в ряде областей, в частности, в биологической микроскопии, когда большая интенсивность света может повредить образцы или когда наблюдаемые особенности чрезвычайно малы. Кроме того, специалисты намерены выяснить, как результаты их исследования могут быть использованы для создания состояний света, полезных для отказоустойчивых квантовых вычислений.
Китай строит квантовую спутниковую сеть
В начале марта 2023 года стало известно о том, что китайские исследовательские институты работают над созданием сети квантовой связи с использованием спутников на низких, средних и высоких околоземных орбитах. Подробнее здесь.
Китай начал серийное производство квантовых компьютеров на 24 кубита
Китай поставил свой первый серийный квантовый компьютер, который можно использовать для решения практических задач. Об этом в конце января 2023 года сообщила газета Министерства науки КНР. Подробнее здесь.
2022
*Стартапы в области квантовых технологий привлекли $2,35 млрд венчурных инвестиций
Квантовые вычисления могут дать миру стимул для развития новых индустрий, основанных на обработке больших данных, отмечается в аналитическом докладе «Квантовые вычисления: перспективы для бизнеса», которым с TAdviser 21 сентября 2023 года поделились представители Сбербанка. Кроме того, они могут обеспечить повышение производительности и эффективности алгоритмов искусственного интеллекта, точности моделей и симуляций сложных систем (таких как молекулы новых лекарств, химические реакции или физические процессы), а также обеспечить новый уровень расчётов в финансах и логистике, новые решения климатических проблем и криптографические алгоритмы, которые обеспечат более высокий уровень безопасности.
По данным, доступным на апрель 2023 г.
Как отмечается в докладе, ведущие страны мира, понимая прорывной потенциал этого направления, включают квантовые технологии в национальные программы и выделяют всё бОльшие бюджеты на исследования. Лидером здесь выступает Китай с общим объёмом госфинансирования в размере $15,3 млрд, что в 4 раза превышает аналогичный показатель США и в 2 раза – показатель ЕС.
В то же время, всё большее внимание в мире уделяется поддержке стартапов в области квантовых технологий. Так, в 2022 году венчурные инвесторы по всему миру вложили в них $2,35 млрд.
Также в 2022 году в мире выдано и опубликовано почти 1600 патентов во всех подобластях квантовых вычислений: от физических реализаций квантового оборудования и коррекции ошибок до ИИ и машинного обучения, говорится в документе.
Свои программы развития имеют ведущие технологические корпорации мира. Так, IBM, которая уже изготовила квантовый процессор на 433 кубита, планирует в 2023 году нарастить количество кубитов до 1121, а Google намерена показать устройство на тысячу кубит после 2025 года. О намерении разработать полный стек технологий для квантовых вычислений заявила корпорация Intel и уже выпустила на рынок квантовые чипы на спиновых кубитах, производимые при помощи технологий для выпуска классических полупроводниковых транзисторов.
По данным, доступным на апрель 2023 г.
В свою очередь, в России работа в области квантовых вычислений ведётся над четырьмя ключевыми физическими платформами: сверхпроводниковыми кубитами, фотонными схемами, нейтральными атомами и ионами в ловушках. Сформировался пул организаций, среди которых как компании, так и научные институты и университеты, которые проводят исследования и разработки, изучают применимость квантовых вычислений к практическим задачам.
В докладе отмечаются следующие основные технологические результаты, достигнутые в России:
- созданы экспериментальные образцы 8-кубитного квантового процессора на сверхпроводниках, 4-кубитного квантового компьютера на основе фотонных чипов и 16-кубитного квантового компьютера на нейтральных атомах (МГУ им. М. В. Ломоносова, Российский квантовый центр (РКЦ));
- представлен 16-кубитный процессор на ионах в ловушках на базе кудитов (ФИАН, РКЦ). Отрабатывается точность квантовых логических операций каждого из кубитов и их попарных взаимодействий;
- разработана демонстрационная схема 8-кубитного квантового симулятора на сверхпроводниках (МФТИ, МИСиС). По результатам 2022 г. в рамках работ по дорожной карте на нём впервые в России реализован алгоритм машинного обучения.
Для поступательного развития квантовых вычислений в России, согласно выводам аналитического доклада, нужно, чтобы в российском квантовом сообществе стало больше исследователей, а бизнес больше вовлекался в постановку задач и разработку прикладных технологий. Корпорациям надо быть более открытыми к внедрению нового и инвестировать в том числе в подготовку кадров для новой индустрии.
В целом авторы исследования приходят к выводам, что, хотя ещё никому в мире не удалось продемонстрировать практическое квантовое превосходство, тем не менее компаниям стоит планировать уже сегодня, что будет после его достижения. Квантовые вычисления возможно достаточно органично встроить в рабочие процессы обработки данных, с применением адаптационных инструментов для популярных языков программирования и интерфейсов.
Подробнее ознакомиться с докладом Сбера «Квантовые вычисления: перспективы для бизнеса» можно по ссылке. Документ подготовлен банком совместно с партнёрами — ВНИИА им. Н. Л. Духова и Институтом искусственного интеллекта AIRI. В сборнике дана оценка текущего состояния и сделаны выводы о развитии квантовых вычислений, препятствиях и ограничениях, которые предстоит преодолеть на пути практического применения квантовых компьютеров как в мире, так и России. В докладе также содержится перечень задач, которые бизнес может решать с помощью квантовых вычислений, и обзор ключевых российских и зарубежных игроков в этой сфере.
Взлом криптографического алгоритма RSA с помощью квантового компьютера
23 декабря 2022 года обнародованы результаты исследования китайских учёных, говорящие о том, что RSA-ключи шифрования взломаны с помощью |квантовых компьютеров. Подробнее здесь.
Мишустин сократил расходы бюджета на квантовые сети РЖД
В декабре 2022 года премьер-министр Михаил Мишустин подписал распоряжение, которым уменьшил бюджетные расходы на развитие квантовых сетей РЖД — с 9,92 млрд до 9,43 млрд рублей. Так, инвестиций на 2023 год сокращены с 2,99 млрд до 2,69 млрд рублей, на 2024-й — с 1,97 млрд до 1,77 млрд рублей. Протяжённость квантовых сетей, которые РЖД должна построить в итоге, осталась прежней – 7 тыс. км. Подробнее здесь.
Как квантовые технологии помогают Toyota собирать автомобили
21 октября 2022 года японский автогигант Toyota и компания Fujitsu Limited сообщили о сотрудничестве в рамках проекта по внедрению технологии Fujitsu Digital Annealer на предприятиях по производству автомобилей. Подробнее здесь.
Baidu представила свой первый квантовый компьютер
25 августа 2022 года китайская компания Baidu, развивающая одноименную поисковую систему (крупнейшую в КНР), представила свой первый квантовый компьютер. Он получил название Qianshi. Подробнее здесь.
Nvidia представила вычислительную платформу Quantum Optimized Device Architecture
Nvidia представила свою вычислительную платформу Quantum Optimized Device Architecture (QODA), цель которой — преодолеть разрыв между квантовыми и классическими приложениями. Об этом стало известно 13 июля 2022 года. Подробнее здесь.
Fujitsu представила симулятор квантового компьютера
В конце марта 2022 года Fujitsu представила симулятор квантового компьютера, способный обрабатывать 36-кубитные квантовые схемы в кластерной системе с суперкомпьютером PRIMEHPC FX 700, оснащенным тем же процессором, что и самый быстрый в мире суперкомпьютер Fugaku. Подробнее здесь.
2021
Hitachi разработала квантовый компьютер для управления движением поездов
В середине октября 2021 года японский промышленный гигант Hitachi сообщил о разработке системы автоматизации на основе технологии квазиквантовых вычислений для оптимизации работы железных дорог. По словам разработчиков, их решение составляет график работы персонала всего за 30 минут, тогда как обычно этот процесс занимает 3-5 дней. Подробнее здесь.
Начались продажи первого в мире сверхпроводящего процессора для квантовых компьютеров
В середине июля 2021 года голландский стартап QuantWare выпустил первый в мире коммерчески доступный сверхпроводящий процессор для квантовых компьютеров (QPU). Эксперты считают, что эта разработка может значительно ускорить революцию в области квантовых вычислений. Подробнее здесь.
В Китае создали самый мощный в мире квантовый компьютер
В середине июля 2021 года китайские исследователи продемонстрировали самый мощный в мире квантовый компьютер, потеснивший процессор Sycamore от Google с лидерских позиций. Подробнее здесь.
Toshiba создала невосприимчивую к взлому квантовую сеть
В середине июня 2021 года исследователи из Кембриджской исследовательской лаборатории Toshiba Europe продемонстрировали, что квантовая информация может успешно передаваться по оптическим волокнам, длина которых превышает 600 км. Новое рекордное расстояние откроет путь для передачи квантовой информации на большие расстояния между мегаполисами. Также утверждается что созданную квантовую сеть нельзя взломать.
Исследователи пояснили, что одной из самых сложных технологических проблем при построении квантового Интернета является проблема передачи квантовых битов по длинным оптическим волокнам. Ранее передача кубитов по оптоволоконным сетям была ограничена небольшой протяженностью сети. Незначительные изменения в окружающей среде, в том числе температурные колебания, могут спровоцировать расширение или сжатие кабеля, что приведет к уничтожению информации.
Toshiba представила невосприимчивую к взлому квантовую сеть
Для уменьшения воздействия окружающей среды в Toshiba создали метод, называемый двухдиапазонной стабилизацией. Он предполагает передачу данных посредством двух сигналов, один из которых компенсирует быстро меняющиеся отклонения, а второй предназначен для более точной настройки фазы. Так, инженеры достигли возможности качественно передавать информацию на расстоянии до 600 км.
Благодаря последнему достижению инженеры смогут создать сеть нового поколения, по которой можно будет безопасно передавать данные между городами и даже странами.
Первым использованием новой технологии, вероятно, будет применение ее для квантового распределения ключей (QKD). Передаваемая посредством оптического волокна информация шифруется с помощью технологии QKD. Ученые объяснили, что, для формирования ключей шифрования протокол использует квантовые сети, которые практически исключают проникновение. При потенциальном взломе сети обе стороны будут предупреждены. [4]
АНБ запустила лабораторию для развития квантовых вычислений
В начале мая 2021 года Исследовательская лаборатория Армии США (Army Research Office) и Лаборатория физических наук (Laboratory for Physical Sciences) при Агентстве национальной безопасности (АНБ) сообщили о запуске исследовательского центра для развития квантовых вычислений. Проект получил название LPS Qubit Collaboratory (LQC). Подробнее здесь.
Toshiba привносит квантовые вычисления в обычные компьютеры
В начале апреля 2021 года стало известно о том, что Toshiba реализовала возможность интеграции своего алгоритма имитации бифуркации (Simulated Bifurcation Algorithm или SBA) с программируемой вентильной матрицей (FPGA), которую можно подключить к рабочим станциям. Подробнее здесь.
Как компании ТЭК используют квантовые вычисления
В конце марта 2021 года портал Smart Energy International опубликовал статью о том, как компании топливно-энергетического комплекса (ТЭК) используют квантовые технологии для решения бизнес-задач. Одно из применений таких разработок заключается в прогнозировании объемов потреблений электроэнергии.
Кроме того, квантовые вычисления помогают предприятиям развивать новые технологии и экологические проекты, а в будущем могут помочь и в принятии инвестиционных решений, отмечают эксперты.
Компании ТЭК начали использовать квантовые вычисления для решения экологических задач
В качестве примера сообщается, что ExxonMobil в сотрудничестве с IBM изучают несколько вариантов повышения экологичности нефтедобывающей компании, в том числе оптимизацию энергосистемы и разработку новых материалов для улавливания углерода. Кроме того, помощь в решении экологических проблем IBM отказывает и BP.
Enel Group надеется, что квантовые вычисления в будущем помогут оптимизировать процессы в области управления персоналом и даже принимать инвестиционные решения. К концу марта 2021 года компания использует алгоритмы, основанные на квантовых концепциях, для оптимизации времени, которое сотрудники группы тратят на дорогу до места распределения или командировки. Ежегодно группа распределяет более 32 млн работников в 13 компаниях группы, компьютерные вычисления уже помогли сократить время пути работников Enel Group до места командировок. [5]
Анонс квантового ускорителя от Quantum Brilliance, работающего при комнатной температуре
В конце марта 2021 года Quantum Brilliance представила, как утверждает компания, первый в мире квантовый ускоритель на основе алмаза, который может работать при комнатной температуре. Подробнее здесь.
Анонс Origin Pilot — операционной системы для квантовых компьютеров
В середине февраля 2021 года китайская компания Origin Quantum сообщила о разработке операционной системы для квантовых компьютеров. Этот продукт, по словам его создателей, способен в несколько раз повысить эффективность работы ныне существующих квантовых вычислительных систем. Подробнее здесь.
2020
Анонс квантового компьютера Honeywell System H1
В конце октября 2020 года Honeywell представила квантовый компьютер System H1, который имеет 10 кубитов. По сообщению американской компании, система обеспечивает удвоенную производительность за счет квантового объема, увеличенного до 128. Подробнее здесь.
Президент США Трамп выделил $1 млрд на 7 ИИ-институтов и 5 центров квантовых вычислений
В конце августа 2020 года Трамп выделил $1 млрд на создание семи научно-исследовательских институтов искусственного интеллекта и пяти исследовательских центров квантовых вычислений в течение пяти лет. Под руководством Национального научного фонда и Министерства энергетики 12 междисциплинарных центров будут исследовать новые технологии и обучать будущих сотрудников. Подробнее здесь.
Начало использования самого мощного квантового компьютера Honeywell
В июне 2020 года Honeywell сообщила о запуске, как утверждает компания, самого мощного квантового компьютера в истории. Систему уже начали использовать несколько клиентов, среди которых — банк JP Morgan Chase. Подробнее здесь.
США увеличивают на 20% госрасходы на квантовые технологии
27 апреля 2020 года стало известно, что Администрация президента США Дональда Трампа при планировании государственного бюджета на 2021 год решила на 20% увеличить расходы на квантовую информатику до $237 млн. При этом затраты на научную деятельность в 2021 году в целом она сокращает на 10%.
Из указанных $237 млн Министерство энергетики США планирует $25 млн в 2021 году потратить на разработку квантового интернета.
Существуя одновременно с традиционным интернетом для общего пользования, квантовый интернет может предложить новые уникальные возможности. Например, ученые смогли бы разрабатывать абсолютно новые лекарственные препараты и материалы, моделируя поведение атомов на сетевых квантовых компьютерах, а финансовые учреждения и правительства смогли бы получить более надежные каналы передачи данных. Многие страны вкладывают в исследование квантовых технологий, и с предложением бюджета на 2021 год администрация Трампа стремится нарастить эти усилия.
Квантовый интернет — это перспективная область, поэтому в США решили увеличить инвестиции в неё. По состоянию на апрель 2020 года в стране имеются прототипы квантовых сетей в Чикаго и Нью-Йорке. В 2020 году ученые провели успешный эксперимент в чикагской сети.
Аналогичные эксперименты проводятся и на Восточном побережье США, где исследователи посылают запутанные фотоны по волоконно-оптическим кабелям, соединяющим Брукхейвенскую национальную лабораторию в Нью-Йорке с Университетом штата Нью-Йорк в Стоуни-Брук на расстоянии около 18 километров. [6]
Honeywell разрабатывает самый мощный квантовый компьютер
В начале марта 2020 года Honeywell International объявила, что присоединяется к гонке по созданию квантового компьютера. Компания готовится к выпуску самой мощной системы в мире. Подробнее здесь.
Индия выделила $1,12 млрд на развитие квантовых компьютеров
В начале февраля 2020 года правительство Индии утвердило свой бюджет на 2020 год, выделив порядка $1,12 млрд на развитие квантовых компьютеров. Эти средства пойдут на развитие Национальной программы по квантовым технологиям и приложениям. Подробнее здесь.
2019
Квантовые компьютеры начали защищать автомобили от кибератак
В начале января 2020 года канадская компания ISARA, ведущий поставщик квантовых систем кибербезопасности, представила обновлённый автомобиль Karma Revero GT, который, по словам разработчиков, способен отправлять и получать электронные голосовые сообщения, не опасаясь, что информация будет перехвачена и расшифрована — даже с применением квантового компьютера. В ISARA создали коммуникационное решение с использованием квантовой связи. Подробнее здесь.
Кто побеждает в квантовой гонке: лидеры по патентам
Совместное исследование 2019 года Ростелекома, Иннопрактики и ФИПС патентного ландшафта в квантовых технологиях помогает прояснить некоторые моменты.
- Мировым лидером по количеству поданных заявок на квантовые патенты является Intel. Это говорит о продуктивности их исследовательского центра, объяснял «Нецифровой экономике» один из авторов исследования, замдиректора центра стратегических инноваций Ростелекома Павел Красовский.
- Однако уже полученных патентов больше всего у японской Toshiba. Она же — одна из главных компаний в сфере квантового шифрования.
- Самые цитируемые патенты в других заявках — у канадской D-Wave и американской военно-промышленной компании Northropp Grumman. У этих компаний самая большая «сила патентов», объясняет Красовский, то есть они изобрели технологии, которые имеют большое значение для исследователей.
- Google и Alibaba Group — мировые лидеры по количеству стран, где запатентованы их квантовые технологии (по 12 стран у каждого). На третьем месте швейцарская компания Quantique (11 стран).
Количество стран, по словам Красовского, показывает, насколько компании близки к коммерциализации своих технологий. Подача патентных заявок — очень затратная процедура, и компании начинают тратить на это деньги только если видят коммерческие перспективы на том или ином рынке.
Интересная ситация сейчас с китайскими компаниями. По словам Красовского, китайские патенты обычно считаются «мусорными», так как у китайских исследовательских центров KPI жестко привязаны к количеству патентов на уровне госполитики. Поэтому они много патентуют внутри страны, но если они пытаются запатентовать ту же технологию за рубежом, то как правило получают отказ из-за отсутствия новизны.
Однако, ряд китайских компаний, таких как Ruban Quantum Technology, недавно начали активно подавать заявки. Пока патентов у них нет, так этот процесс занимает не менее полугода, но если провести такое же исследование через год, то есть вероятность, что Ruban Quantum Technology окажется в числе лидеров.
Россия занимает 9 место в мире по количеству патентов в сфере квантовых технологий, следует из совместного исследования Ростелекома, Иннопрактики и ФИПС. В первую пятерку входят США, Китай, Япония Корея и Германия.
- Больше всего патентных семейств в России у Российской академии наук (включая Курчатовский институт) – 6 семейств. На втором месте — Фонд перспективных исследований, у него три патентных семейства, связанных с квантовыми технологиями. По два патентных семейства у НИК «Каскад», и «Лаборатории оптико-волоконных приборов». У остальных шести организаций по одному семейству. Среди них — Российский квантовый центр, ИнфоТеКС, Фотонные нано-мета технологии, а также два Нижегородских университета и один Иркутский.
- Авторы исследования также отмечают большое количество заявок на патенты в России со стороны зарубежных компаний. Например, британской Element Six Technologies, Fisk Software и University of Cophengagen.
- Активнее всего российские компании занимались патентованием в области квантовых технологий в 2012-2015 годах. Авторы отчета связывают этот всплеск с увеличением финансирования.
- Если брать международную патентную классификацию, то чаще всего в России квантовые технологии патентуют в области устройств для секретной или скрытой связи, автоматического управления частотой или фазой и синхронизации, квантовой связи и в устройствах или способах обработки данных.
Google создала самый мощный квантовый компьютер в мире
В середине сентября 2019 года компания Google объявила, что смогла создать самый мощный в мире квантовый компьютер. Информация об устройства была опубликовала в докладе NASA, который впоследствии был удалён с сайта организации. Подробнее здесь.
Германия инвестирует 650 млн евро в квантовые вычисления
В середине сентября 2019 года стало известно о том, что правительство Германии инвестирует 650 млн евро в течение следующих двух лет, чтобы поддержать переход квантовых технологий из фундаментальных исследований в готовые к применению приложения. Подробнее здесь.
20 лет развития квантовых вычислений. Инфографика
На август 2019 г ожидается, что Rigetti, стартап по квантовым вычислениям, выпустит 128-кубитовую систему в 2019 году. Это может стать важным достижением на квантовой арене.
Принципиальное различие между современными компьютерами и вычислительными системами, с которыми мы взаимодействуем, заключается в огромной скорости и способе обработки информации на сервере. Создание подобных машин угрожает современным стандартам шифрования данных.
Банк впервые начал использовать квантовые вычисления для защиты от кибератак
В конце июня 2019 года стало известно о том, что ABN Amro первым среди банков начал использовать квантовые вычисления для борьбы с кибератаками. Для этого голландская компания начала сотрудничество с научно-исследовательским институтом QuTech, который создан Делфтским техническим университетом совместно с Голландской организацией прикладных научных исследований (Netherlands Organisation for Applied Scientific Research). Подробнее здесь.
Запуск в Британии первой в мире коммерческой квантовой сети
В конце марта 2019 года в Британии была запущена первая в мире коммерческая квантовая сеть. Безопасная сеть будет применять квантовое распределение ключей (QKD): для защиты шифрованных сообщений используются принципы квантовой механики, а не сложные математические расчеты. Подробнее здесь.
2018
Ford будет использовать квантовый компьютер NASA для решения транспортных проблем
5 декабря 2018 года Ford в рамках очередного проекта разработает для грузовых дизельных машин комплексные карты маршрутов, которые помогут поддерживать нормальную работу сажевых фильтров. В 2019 году компания получит доступ к Лаборатории NASA по изучению квантового искусственного интеллекта Quantum Artificial Intelligence Lab в Исследовательском центре Эймса (Ames Research Center) в Кремниевой долине.
Специалисты Ford вместе с представителями NASA будут работать с компьютером, функционирующим по принципу квантовой релаксации (квантового отжига), который поможет решить сложнейшие задачи. Возможности квантовых вычислений будут применены для разработки решений в сфере управления большими автомобильными парками. Подробнее здесь.
Квантовый компьютер Microsoft
В марте 2018 года стало известно о том, исследователи голландского центра Microsoft, расположенного в Техническом университете в Делфте (Delft University of Technology), работают над созданием квантового компьютера с гораздо более низкой частотой ошибок, чем в проектах, которые тестируются конкурирующими компаниями, такими как IBM и Google.
Согласно исследованию, опубликованному в журнале Nature, в Microsoft получили достоверные свидетельства создания майорановских фермионов — элементарной частицы, являющейся собственной античастицей — в проволоке, состоящей из полупроводниковых и сверхпроводящих материалов. Уникальные свойства этих фермионов означают, что они могут быть использованы для создания квантовых компьютеров.
«Квантовый холодильник» Microsoft сохраняет кубиты при сверхнизкой температуре, необходимой для компьютерных вычислений
Именно их пытаются получить в голландском подразделении Microsoft в Делфте, где работают несколько холодильных установок стоимостью более $500 тыс. каждая. Они охлаждают специальные контуры до сверхнизких температур, при которых появляется возможность получить майорановские фермионы. Рядом с несколькими холодильниками висят гигантские 68-фунтовые магнитные кольца, которые команда Microsoft использует, чтобы снизить частоту ошибок в вычислениях. Магниты, впрочем, как признает физик Лео Коувенховен, являются обоюдоострым мечом, так как их большой размер и вес затрудняют эксперименты.
По словам Коувенховена, Microsoft полагает, что вычисления его квантового компьютера — если его удастся создать — будут в 1000 и 10 000 раз точнее, чем у существующих моделей. В том же помещении рядом с холодильниками работают молодые исследователи, анализирующие красочные графики, однако пока что признаков появления фермионов не отмечается. Точные измерения в плотном магнитном поле получить сложнее, и хотя теория на стороне исследователей, у них может просто не хватить времени на создание квантового компьютера мечты. Цель группы Коувенховена — получить стабильные майорановские фермионы к концу 2018 года.
Другие тестируемые версии квантовых компьютеров совершают слишком много ошибок в расчетах, чтобы использоваться на практике, например, для создания новых химических катализаторов или взламывания шифровальных кодов, на что изначально надеялись создатели. Поэтому несмотря на высокие затраты Microsoft пытается получить фермионы для создания кубитов — квантового разряда или наименьшего элемента для хранения информации в квантовом компьютере.
До сих пор Microsoft уступала конкурентам: у Google и IBM уже есть машины, которые, как считается, близки к достижению «квантового превосходства» — способности решать задачи, слишком сложные для стандартных компьютеров, — тогда как Microsoft еще даже не получила рабочий кубит. Однако кубиты на основе майорановских фермионов могут стать основой для потенциально более эффективного квантового компьютера. Поэтому Microsoft собрала группу ученых, которые принялись за работу в лабораториях в США, Нидерландах, Дании и Австралии. Ответственным за проект был назначен один из самых опытных руководителей Microsoft, Тодд Хольдхэл, который ранее работал над игровыми консолями Xbox и игровыми очками дополненной реальности HoloLens.
Генеральный директор Microsoft Сатья Наделла пояснил, что квантовые разработки наряду с искусственным интеллектом и дополненной реальностью будут иметь решающее значение для будущего компании, а в ноябре 2017 года Хольдхэл заявил в интервью Bloomberg, что Microsoft выведет на рынок собственный квантовый компьютер в течение следующих пяти лет. [7]
2017
Intel Квантовый 17-кубитный процессор
В октябре 2017 года было объявлено о поставке экспериментального 17-кубитного процессора Intel, созданного на базе технологий сверхпроводимости, в нидерландский исследовательский центр QuTech, занимающийся совместно с Intel исследованиями в области квантовой физики. Процессор, изготовленный на производственных мощностях Intel, отличается уникальной структурой кристалла, позволяющей повысить выход годных кристаллов на пластине и добиться существенного прироста производительности.
Между землей и самолетом впервые наладили квантовую связь
Физики из Университета Уотерлу (Канада) впервые реализовали квантовый канал связи для распределения секретных ключей шифрования между летящим самолетом в качестве получателя и наземной станцией в качестве отправителя. В рамках эксперимента ученым удалось в 6 попытках из 14 сгенерировать секретный ключ. В будущем система может найти применение для квантовой связи между самолетами и спутниками. Исследование опубликовано [8] в журнале Quantum Science and Technology, кратко о нем сообщает [9] Physics World [10] .
Существующие системы криптографии основаны на существовании секретного ключа, с помощью которого происходит шифрование информации. Без знания этого ключа расшифровка по сути невозможна. К примеру, в методе шифровальных блокнотов и получатель и отправитель хранят у себя абсолютно идентичные наборы случайных данных, которые суммируются с текстом сообщения. Без блокнота перебор всех возможных ключей даст все возможные сообщения данной длины.
Однако ключ необходимо каким-либо образом передать между участниками связи. Перехват ключа на этом этапе позволит злоумышленнику полностью расшифровать всю переписку. Чтобы такой перехват был невозможен на уровне законов физики, ученые разработан алгоритм квантового распределения ключа. Он основан на передаче одиночных фотонов, приготовленных в случайном состоянии («ноль» или «единица») и в случайном базисе (в вертикальной/горизонтальной или диагональной поляризации). При попытке злоумышленника измерить поляризацию фотона, произойдет изменение состояния последнего. Это удастся легко отследить отправителю и получателю и отбросить скомпроментированный ключ.
Для реализации подобных протоколов связи необходимо наладить квантовую коммуникацию между отправителем и получателем. В случае городских сетей, это можно сделать с помощью оптоволоконных линий. Также распределение ключа между неподвижными объектами можно организовать «по воздуху», с помощью лазера и детектора. Эти подходы уже были реализованы — предельные расстояния составляют около нескольких сотен километров в обоих случаях. Технику ограничивают потери в оптоволокне и рассеяние на турбулентных потоках в воздухе.
Авторы новой работы продемонстрировали принципиальную возможность квантового распределения ключа между летящим самолетом и наземной станцией. Для приема и передачи сигнальных фотонов физики использовали пару моторизированных телескопов. Приемник был установлен на самолете «Твин оттер», облетавшем наземную станцию по дуге или по прямой линии на высоте 1,6 километра. Номинальные расстояния между источником и приемником колебались от 3 до 10 километров. В установке были предприняты методы защиты от простейших атак, в том числе, «Троянских коней».
Всего самолет выполнил 14 полетов рядом с наземной станцией со скоростью около 200-250 километров в час. Ровно в половине случаев исследователям удалось установить квантовый канал связи и в шести из них — сгенерировать секретный ключ. Время квантовой связи колебалось от 30 секунд до четырех с половиной минут, максимальный размер секретного ключа составил 867 килобит.
На подготовку эксперимента у ученых ушло почти восемь лет. Ранее похожий эксперимент был поставлен в Германии, однако на самолете находился источник фотонов, а не приемник. По словам физиков, именно в новой постановке эксперимента ключ можно будет успешно генерировать для связи между спутником и самолетом. Преимущество использования спутника в отсутствии естественных помех между отправителем и получателем, например, гораздо более разреженная среда.
Microsoft работает над созданием квантового компьютера
Microsoft объявила в июне 2017 года о проведении разработок в области создания квантового компьютера. Подобные машины способны перевернуть всю индустрию, так как позволят обрабатывать за секунды объемы данных, на анализ которых сейчас ушли бы годы. Технология, использующаяся в них, основана на кубитах (квантовых битах), которые могут одновременно находиться в двух состояниях – 0 и 1, в то время как обычные биты находятся только в одном из них. В будущем эта технология повлияет на такие области как криптография и сверхзащищенная связь, а также моделирование климата и поиск темной материи [11] .
Проект по созданию квантового компьютера Microsoft возглавляет Тодд Холмдал (Todd Holmdahl), ранее входивший в число руководителей команд разработчиков Kinect, HoloLens и Xbox. Сейчас он говорит о квантовых вычислениях, как о новом направлении в бизнесе, а не теоретических или исследовательских проектах. И он уверен, что именно Microsoft станет пионером в этой области, внедрив квантовые технологии в свои облачные платформы.
Команда под руководством Тодда Холмдала, входящая в состав недавно созданной Microsoft AI и Research Group, будет работать как над аппаратной так и программной частями квантового компьютера. «Подобно классическим высокопроизводительным вычислениям, нам нужно не только оборудование, но и оптимизированное программное обеспечение», — комментирует Матиас Тройер (Matthias Troyer), профессор вычислительной физики Швейцарской высшей технической школы Цюриха, специально приглашенный для участия в проекте исследовательской группы Microsoft.
В Microsoft уверены, что знания, накопленные Microsoft Research достигли того уровня, который позволит создать настоящий прорыв в создании квантового компьютера. На вопрос о том, когда Microsoft сможет построить свой первый топологический кубит, Холмдал, которому сейчас 52 года, не дает точного ответа. Однако отметил, что скоро он уходит на пенсию и событие произойдет до этого момента.
2016
Исследовательский проект Microsoft
В ноябре 2016 года стало известно о том, что Microsoft разрабатывает квантовый компьютер. Для этого компания сформировала отдельный исследовательский проект, который возглавил ветеран Microsoft Тодд Холмдал (Todd Holmdahl), входивший в число руководителей команд разработчиков Kinect, HoloLens, и Xbox.
Квантовые вычисления предполагают, что использующие их компьютерные системы могут находиться в двух состояниях одновременно. Если традиционные ПК записывают биты информации последовательно (в состояниях нуль или единица), то квантовые могут выполнять несколько вычислений параллельно, кодируя два значения сразу.
Тодд Холмдал — глава проекта Microsoft по разработке квантового компьютера
Microsoft намерена создать «топологический» квантовый компьютер с двухмерными частицами, называемыми энионами, образующими трехмерные переплетения с двумя пространственными измерениями энионов и временем. Компания планирует использовать такие системы в проектах искусственного интеллекта, клинических исследованиях, моделировании климатических условий и др.
Помимо Тодда Холмдала, в команду исследователей квантовых вычислений Microsoft также вошли известные специалисты в этой области — профессоры Лео Кувенховен (Leo Kouwenhoven) из Дельфтского технологического университета, Чарльз Маркус (Charles Marcus) из Университета Копенгагена, Дэвид Рейлли (David Reilly) из Университета Сиднея и Маттиас Тройер (Matthias Troyer) из Швейцарского федерального технологического института.
Концепцией квантовых вычислений Microsoft заинтересовалась еще в 2005 году, создав тогда исследовательскую лабораторию Station Q под руководством математика Майкла Фридмана (Michael Freedman). В 2015 году Microsoft представила симулятор LIQUi|> (Language-Integrated Quantum Operations), позволяющий любому человеку изучать возможности квантовых вычислений. [12]
Китай построит новую квантовую коммуникационную линию
Китай планирует к концу 2017 года построить новую квантовую коммуникационную линию длиной более 300 километров, пишет газета China Daily со ссылкой на китайскую аэрокосмическую компанию (CASIC).
Строительство линии, которая соединит между собой город Ухань и Хэфэй, начнется в ближайшее время. Как отметил представитель CASIC У Сяофэн, линия будет использоваться правительственными структурами, а затем станет доступна местному бизнесу. Объем инвестиций оценивается в 29 миллионов долларов. Позднее эта линия будет соединена с линией между Пекином и Шанхаем, открытие которой запланировано на конец 2016 года.
В Китае в ноябре 2016 года открылась самая протяженная в мире квантовая коммуникационная линия, ее длина составляет 712 километров. Она соединяет между собой город Хэфэй в провинции Аньхой и Шанхай. Она является частью проекта квантовой коммуникационной линии протяженностью в 2 тысячи километров, создание которой началось в 2013 году. На линии расположены 11 наземных станций.
Китай начал разработку спутника квантовой связи в 2011 году. В середине августа был успешно осуществлен запуск первого в мире спутника квантовой связи «Мо-цзы» (Micius).
Как заявил ранее академик Китайской академии наук Пань Цзяньвэй, все системы спутника работают исправно. Отмечалось, что «Мо-цзы» после трехмесячного тестирования на орбите, будет сдан в эксплуатацию во второй половине ноября. До этого Пань Цзяньвэй также заявил, что Китай может к 2030 году создать глобальную сеть квантовой связи.
С начала XX века ученые разрабатывают методики шифрования и безопасной передачи информации. Они обладают двумя ключевыми недостатками — их можно взломать при приложении достаточных вычислительных мощностей (к примеру, квантового компьютера), или же информацию можно извлечь, «подслушав» её передачу по каналу данных.
Так называемые квантовые сети решают обе эти проблемы за счет того, что фундаментальное положение квантовой физики — принцип неопределенности Гейзенберга — не позволяет «третьему лишнему» считывать информацию с канала данных и подбирать к ней ключ.
2015: Google заявила о вероятности создания квантовых компьютеров
Квантовые компьютеры никогда не выиграют у современных классических компьютеров, если не обретут способность самостоятельной коррекции ошибок, разрушающих «хрупкие» квантовые состояния их квантовых битов, кубитов. Группа компаний Google, ведущая исследования в области квантовых вычислений, продемонстрировала первую в мире систему, способную самостоятельно производить коррекцию возникающих ошибок — шаг, приближающий область квантовых вычислений к ее практической реализации [13] .
Процессор квантового компьютера D-Wave, 2014
Помянутое достижение стало возможным в результате перехода в компанию Google группы ученых из Калифорнийского университета в Санта-Барбаре , осенью 2014 года. В свое время она разработала и изготовила систему квантовых сверхпроводящих схем, работающих с уровнем точности и надежности, достаточным для реализации технологии устранения ошибок.
«Это первый случай в истории информационных технологий, когда «естественные» ошибки, возникающие в результате воздействия на кубиты различных факторов окружающей среды, могут быть исправлены, — поведал Рэми Барендс (Rami Barends), инженер компании Rami Barends. — Мы создали первое квантовое устройство, способное самостоятельно исправить возникающие при его работе ошибки».
Интересующимся сферой квантовых вычислений хорошо известно — основная проблема, с которой сталкиваются создатели квантовых вычислительных систем — необходимость сохранения квантового состояния кубитов в течение длительного времени. Хрупкое квантовое состояние может нарушаться вмешательством любого, из достаточно большого набора внешних факторов, от которых отгородиться полностью не получается принципиально. Решением этой проблемы является квантовый код коррекции ошибок, основа которого — классический метод устранения ошибок, достаточно широко используемый в современной вычислительной технике.
Но главная проблема, с которой пришлось столкнуться исследователям, в том, что разработанный код коррекции не имеет возможностей обнаружения возникшей ошибки прямым способом, не нарушая квантовое состояние кубитов.
Исследователи обошли эту проблему, используя явление квантовой запутанности, при помощи которого один кубит может делиться информацией с другими кубитами посредством «призрачной» квантовой связи. Корректирующий код, включенный в состав квантовой системы, измеряет значение квантового состояния кубита, запутанного с несколькими соседними кубитами, что помогает удержать его исходное состояние неизменным.
Созданный код коррекции ошибок работает за счет использования определенного пространственного расположения кубитов, которое чем-то напоминает шахматную доску. В белых квадратах этой доски располагаются информационные кубиты, задействованные в выполнении квантовых вычислительных операций, а в черных квадратах находятся «измерительные» кубиты, используемые для коррекции ошибок, возникающих в прилежащих информационных кубитах.
Для демонстрации технологии исследователи изготовили простое устройство, состоящее из девяти кубитов, упорядоченных в виде матрицы 3 на 3 элемента. И работа этой системы, точнее, работа корректирующего кода была проверена при помощи 90 тысяч специализированных вычислительных операций, что позволило собрать необходимое количество статистических данных.
«Это послужило доказательством тому, что потраченные на теоретические исследования годы не прошли впустую и практическая реализация технологий коррекции ошибок возможна» — отметил Джулиан Келли (Julian Kelly), инженер компании Google.
Еще одно достижение: исследователи продемонстрировали, что показатели успешного устранения ошибок в квантовой системе увеличились с увеличением количества кубитов. К примеру, уровень ошибок при работе системы с пятью кубитами был в 2,7 раз меньше уровня ошибок в системе с единственным кубитом. А разница в этих уровнях между системами с одним и девятью кубитами составила чуть более 8,5 раз.
«Это захватывающая новость для сферы квантовых вычислений. Все указывает на то, что системы с большим количеством квантовых битов могут быть стабильны и не рухнут под напором лавины возникающих ошибок, — подчеркнул Джулиан Келли. — И это, в свою очередь, означает, что квантовые компьютеры, оперирующие большим количеством кубитов, все же могут быть созданы».
2013: Lockheed Martin использует канадскую квантовую систему D-Wave
На июль 2013 года даже современные, пока еще не очень совершенные, квантовые вычислительные системы пользуются огромным интересом ведущих мировых кампаний. Так, канадскую квантовую вычислительную машину D-Wave использует оборонная компания Lockheed Martin, а в начале 2013 года D-Wave усилил вычислительные мощности Google. D-Wave не является универсальным квантовым компьютером, хотя и может быть использован в качестве основы для его разработки. D-Wave — это 512-кубитная вычислительная машина на сверхпроводящих кольцах предназначенная для решения так называемых задач комбинаторной оптимизации, например анализа генома, вариантов сворачивания белков и т.п. Google будет использовать D-Wave для проектирования систем искусственного интеллекта, способного к самообучению.
Смотрите также
- Квантовая коммуникационная платформа цифровой экономики
- Квантовая криптография
- Постквантовая криптография
- Российский квантовый центр (РКЦ, Russian Quantum Center, RQC)
- Суперкомпьютер
- Фотонная интегральная схема (ФИС)
Примечания
- ↑Лазерный чип может стать ключом к созданию масштабируемой квантовой памяти
- ↑ [ https://arxiv.org/ftp/arxiv/papers/2302/2302.14012.pdf Drone-based quantum key distribution]
- ↑Scientists open door to manipulating ‘quantum light’
- ↑Toshiba registers new quantum record
- ↑Компании ТЭК начали использовать квантовые вычисления для решения экологических задач
- ↑Trump betting millions to lay the groundwork for quantum internet in the US
- ↑Microsoft Edges Closer to Quantum Computer Based on Elusive Particle
- ↑Airborne demonstration of a quantum key distribution receiver payload
- ↑Flash Physics: Quantum cryptography for aircraft, AI boosts X-ray probe, cold nebula born in stellar collision
- ↑Между землей и самолетом впервые наладили квантовую связь
- ↑Microsoft работает над созданием квантового компьютера
- ↑Microsoft doubles down on quantum computing bet
- ↑Компания Google начинает внедрять первые технологии коррекции ошибок в область квантовых вычислений