С какой скоростью видит человек
Перейти к содержимому

С какой скоростью видит человек

  • автор:

Сколько кадров в секунду видит человеческий глаз

Миф про 25-й кадр хоть раз слышал каждый. До сих пор многие уверены, что человеческий глаз способен воспринимать максимум 24 кадра в секунду. Однако это огромное заблуждение. И, что интереснее всего, в байку про 24 кадра люди верили даже лет 15-20 назад, когда повсеместно встречались ЭЛТ-мониторы, наглядно опровергающие это утверждение своим мерцанием.

Откуда взялся миф про 24 кадра

Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок.

Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду (всего 30 см), не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать.

Волнообразные линии вверху — звуковая дорожка

Увеличить показатели FPS именно до 24 решили тоже не просто так. Секундный расход пленки теперь составлял 1,5 фута, минутный – 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы.

Для такой скорости требовалось более точное и выносливое оборудование (как для съемки, так и воспроизведения в кинотеатрах), а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий.

Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц (смен направления в секунду) 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. А вот в США, где вместо привычных нам 220-230 вольт 50 Гц используется 110-120 вольт 60 Гц, телевизионный стандарт NTSC работает с частотой 30 (29,97) кадров в секунду.

Частоту кадров на ТВ привязали к синусоиде тока в сети

Сколько кадров в секунду в действительности видит глаз

Человеческое зрение – это не дискретная система, возможности которой можно описать простыми цифрами. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе.

Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется – разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения – тем выше предельная частота.

Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке

Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные. Если этот человек быстро бежит – разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия – то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты.

Сравнение 24 и 60 кадров в секунду на динамичном видео

Чтобы проверить это, не нужно далеко ходить. Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом – на высоких или максимальных, чтобы получить меньше 30 FPS. Вы сразу заметите разницу: в первом случае объекты хоть и будут менее детальными, но движения – гораздо более плавными.

Увидев разницу между 30, 60 и 100 FPS, можно наглядно убедиться, что человеческий глаз видит гораздо больше 24 кадров в секунду. Предел, после которого разница становится не видна, зависит от индивидуальных особенностей зрения, и в случае с видео или игрой составляет 80-150 кадров в секунду, а иногда и больше.

Пределы восприятия зрительной системы

Помимо кадровой частоты, имеют значение и амплитуда смены кадра, резкость цветовых переходов, время показа каждого кадра. Если просто набрать разноцветных картинок, склеить их в видеоролик и менять со скоростью 120 кадров в секунду, человек хоть и не заметит все цвета, но будет испытывать дискомфорт.

Причина дискомфорта – напряжение глаз, которые пытаются зафиксировать каждую смену, и зрительного центра в мозге. Если долго смотреть на такое, могут заболеть глаза и голова, а у человека с эпилепсией может случиться приступ.

При коротком времени показа кадра (1 миллисекунду показывает – 10 мс не показывает) чувствительность глаз становится еще выше. Даже если человек не видит (не воспринимает сознательно) смены кадра, и картинка плавная, резкие цветные вспышки (когда кадр показывается), чередующиеся с черным фоном (кадр не показывается), зрительная система улавливает.

Именно этим обусловлен дискомфорт, который испытывают некоторые люди при наблюдении AMOLED-экранов Samsung на сниженной яркости. Ведь в режиме снижения яркости включается ШИМ-регулятор подсветки, который быстро включает и гасит пиксели. Циклов включения-гашения за секунду происходит 240, то есть их частота – 240 Гц или 240 кадров в секунду.

Полосы на экране — эффект от мерцания, которое замечает камера

Человек вроде и не видит смену кадров с такой частоты, картинка кажется плавной, но чувствительная зрительная система все же фиксирует этот процесс. То есть, сознание хоть и видит за секунду меньше кадров, но глаза способны уловить и больше. Просто из-за очень высокой частоты мозг напрягается, но не обрабатывает эту информацию до конца.

Незаметными для людей с высокочувствительным зрением становятся только частоты смены кадра и мерцания порядка 1000 Гц. Именно от 1 кГц (1000 кадров в секунду) – предел восприятия, преодолеть который большинство человеческих глаз не может. Таким образом, при наблюдении движущегося изображения, в большинстве случаев, человеческий глаз видит максимум около 100-150 кадров в секунду, но воспринимать способен на порядок больше.

Каталог

  • Все телевизоры
  • OLED телевизоры
  • QLED телевизоры
  • Nano Cell телевизоры
  • 4K Ultra HD телевизоры
  • 8K Ultra HD телевизоры
  • Телевизоры LG
  • Телевизоры Samsung
  • Телевизоры Sony
  • Все стиральные машины
  • Стиралки с вертикальной загрузкой
  • Стиралки с фронтальной загрузкой
  • Узкие стиральные машины (до 45 см)
  • Все холодильники
  • Холодильники Side by Side

Сколько кадров в секунду в действительности видит глаз??

Человеческое зрение – это не дискретная система, возможности которой можно описать простыми цифрами. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе.? ⠀ ? Зрительная система воспринимает картинку целостно, замечая только ее изменения. Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется – не принципиально, будет за секунду меняться 5 кадров, 25, или 250. ⠀ ? Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения – тем выше предельная частота. Предел, после которого разница становится не видна, зависит от индивидуальных особенностей зрения, и в случае с видео или игрой составляет 80-150 кадров в секунду, а иногда и больше?

  • by technoparkrgsu
  • вкл 02.06.2020

Может ли человеческий глаз увидеть 1000 кадров в секунду?

Мы не знаем его происхождения, но миф гласит, что человеческий глаз может воспринимать только 24 кадра в секунду. Конечно, это полная выдумка, поскольку мы бы даже не считали игру играбельной, если бы она упала ниже отметки 30 кадров в секунду. но тогда сколько кадров в секунду могут воспринимать наши глаза? Ну, вообще-то… 1000. Правильно, ребята; мы действительно фантастические существа! Гипотетически мы можем воспринимать 1000 кадров в секунду, потому что примерно с такой скоростью работают нейроны в нашем мозгу. Главное помнить, что зрение — это не только сознательное распознавание. Несмотря на то, что наши глаза могут быть ограничены в том, на чем они могут сосредоточиться, информация, поступающая в наш мозг, гораздо более обширна. Это странно, мы знаем. Звучит как оксюморон, но мы действительно замечаем вещи, о которых даже не подозреваем, каждый божий день. Но имейте в виду, что 1000 кадров в секунду — это всего лишь обобщенная гипотетическая цифра. Ваша истинная способность воспринимать кадры может быть намного выше или ниже, чем у кого-то другого

Тогда сколько кадров в секунду могут воспринимать наши глаза? Ну, вообще-то… 1000. Правильно, ребята; мы действительно фантастические существа! Гипотетически мы можем воспринимать 1000 кадров в секунду, потому что примерно с такой скоростью работают нейроны в нашем мозгу.

Главное помнить, что зрение — это не только сознательное распознавание. Несмотря на то, что наши глаза могут быть ограничены в том, на чем они могут сосредоточиться, информация, поступающая в наш мозг, гораздо более обширна. Это странно, мы знаем. Звучит как оксюморон, но мы действительно замечаем вещи, о которых даже не подозреваем, каждый божий день. Но имейте в виду, что 1000 кадров в секунду — это всего лишь обобщенная гипотетическая цифра. Ваша истинная способность воспринимать кадры может быть намного выше или ниже, чем у кого-то другого.

Разберёмся с кадрами в секунду

В этой заметке расскажу откуда появились 24 кадра в секунду, почему в США их 29,97. Зачем играм так много FPS и почему 25 кадр не работает.

Вступление

Любая анимация существует благодаря инертности зрения. Если изображения сменяются достаточно быстро, то мозг не видит их по отдельности, а создаёт иллюзию непрерывного движения. Скорость смены изображений должна быть выше 10-12 в секунду, иначе мозг воспринимает картинки по-отдельности. Казалось бы, вот и подходящая для человека кадровая частота — 12 FPS и больше. Но не всё так просто.

Немые фильмы

Представьте себе ленту немого фильма, в которой 1 500 отдельных изображений. Если мы покажем фильм со скоростью 12 кадров в секунду, то увидим что-то такое. Гифку сделал по ссылке, чтобы не раздражала мерцанием.

Движение есть, но мерцание в кадре всё портит. Оно появилось из-за того, что мы должны закрыть проектор, чтобы прокрутить ленту дальше и показать новое изображение. По словам Томаса Эдисона, наше зрение не заметит мерцание, если мы будем прокручивать ленту со скоростью 46 кадров в секунду. Но это не лучший вариант, и вот почему.

Сейчас у нас фильм состоит из 1 500 изображений и мы его проигрываем со скоростью 12 кадров в секунду.
Получается 1 500 кадров / 12 кадров в секунду = 125 секунд
Значит, нам достаточно 1 500 кадров, что создать двухминутный фильм.

Со скоростью 46 кадров в секунду наш фильм будет идти всего 32 секунды. То есть, чтобы восстановить хронометраж мы должны создать не 1 500 кадров, а 5 750 = 125 секунд * 46 кадров в секунду. Кинолента будет длиннее в четыре раза, количество кадров больше, а значит отснять, смонтировать и показать фильм выйдет намного дороже.

Легче изменить конструкцию проектора. Поэтому вместо обычного обтюратора поставили трёхлезвийный.

Теперь один кадр показывают три раза и только потом сменяют на новый. Получается частота кадров (хоть и одинаковых) увеличилась. Количество мерцания увеличилось по количеству, но в три раза сократилось по времени. Таким образом инертность зрения стала «съедать» мерцание в кадре.

Мы сменяем кадры со скоростью 16 FPS, но зрителям показываем один и тот же кадр три раза.
И получаем 48 спроецированных кадра в секунду = 16 кадров * 3 повторения. Прямо как и хотел Эдисон, даже лучше.

Мы взяли 16 FPS, а не 12 или 14, так как 16 — минимальное целое число, которое умножается на 3 и в результате даёт число больше 46.

Вот мы и получили первую кадровую частоту — 16 FPS для немых фильмов. Плюс немых фильмов в том, что мы можем легко увеличить или уменьшить количество кадров в секунду, это повлияет только на скорость воспроизведения. Ручку проектора крутил человек и мог варьировать скорость кадров от 14 до 26 FPS.

Звук

Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS.

24 кадра * 2 повторения = 48 проецируемых кадров в секунду. Всё просто и удобно. 24 нацело делится на 2, 3 и 4. То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6.

Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97?

Телевизор

Когда решили транслировать изображение по телевизору возникли новые проблемы. Показывать два раза один и тот же кадр было не вариант, да и технически это было сложновато. Ещё надо передать аналоговый сигнал по радиоволнам. И чем больше кадров, тем больше вес файла — значит канал передачи должен быть шире, а значит и дороже. Поэтому стали передавать кадры по половинкам — полукадрами. Разбиваем изображение на полосы и показываем сначала все нечётные, а потом все чётные. Инертность зрения делает своё дело и мы видим целый кадр.

Кадр из людей в чёрном 3

В телевизоре происходит то же самое, только намного быстрее.

По-умному, это называется чересстрочная развёртка и обозначается буквой «i», от слова «interlaced». Ролик с чересстрочной развёрткой и разрешением 1920 × 1080 будет называтся 1080i. А такой же ролик с прогрессивной развёрткой — 1080p. Это означает «progressive» или то, что кадры передаются целиком.

Чтобы не было лишних шумов и конструкция телевизора была проще, полукадры решили обновлять с частотой электросети. Для Европы это 50 Гц. Получилось 50 полукадров в секунду или 25 целых кадров в секунду. В США частота электросетей 60 Гц, значит полукадров будет 60, а кадров соответственно 30.

И вот вроде как всё хорошо, но тут появляется цвет.

Цвет

Теперь через тот же канал нужно донести больше информации. Мы должны передать чёрно-белое изображение для старых телевизоров, цветное изображение и звук. И сделать это было довольно сложно. Потому что как только мы добавляем в электромагнитный спектр информацию о цвете его частота пересекается со звуком и создаёт помехи. Чтобы чётко разделить цвет и звук решили снизить частоту полукадров на 0,1%.

60 полукадров — 0,1% = 59,94 полукадров в секунду
59,94 полукадров в секунду/2 = 29,97 кадров в секунду

Система вещания с такой странной кадровой частотой называется NTSC и использовалась в США и ещё парочке стран.

В Европе таких сложностей не было, в качестве стандарта сразу взяли PAL, который был создан, чтобы решить проблемы с цветом. Поэтому как было 25 кадров в секунду, так и осталось.

>30 FPS

Зачем же тогда делают фильмы в 60 FPS?
Дело в том, что камера размывает любое резкое движение в сторону направления объекта. Величина размытия зависит от расстояния, которое объект прошёл за 1 кадр. И чем больше количество кадров в секунду, тем меньше размытие.

1 секунда / 25 фпс = 0,04
1 секунда / 60 фпс = 0,016

Это называется моушн-блюр.

Разница между фильмами с 25 FPS и 60 FPS только в плавности движения. Резкие движения в фильме выглядят менее размытыми. За счёт этого картинка кажется более реалистичной. Вот в этом и смысл.

25 кадр

Представьте, что мы берём книгу в которой 24 страницы — 23 белые и 1 красная. Если мы пролистнём книгу за одну секунду, то точно заметим, что одна страница другого цвета. Если страниц в книге 25, то ничего не изменится. Страница не станет невидимой и тем более не будет влиять на подсознание, она просто пролистнётся не за 1/24 секунды, а за 1/25. Вот и вся разница. Даже если страниц будет больше 100 — глаз поймёт, что одна из них отличается. Абсолютно то же самое с видео.

Наше зрение не ограничивается считыванием какого-то определённого количества кадров в секунду. Различия между кадрами будут заметны и на двухстах, и на пятистах кадрах в секунду.

Слоумоушн и таймлапс

Слоумоушн это, когда мы снимаем видео с большей частотой кадров, а смотрим с меньшей — снимаем в 120, смотрим в 25.

Снимем на айфон 6 секунд в 120 FPS. Это значит, что за секунду он создаст 120 изображений. За 6 секунд — 720. А смотреть мы их будем в 25 FPS. Это значит, что 720 изображений / 25 FPS мы будем смотреть почти 29 секунд. За это время мы и рассмотрим все детали.

А если мы возьмём высокоскоростную камеру, снимем 1 секунду с фреймрейтом 5 000 FPS и посмотрим в 25 FPS.

5 000 * 1 / 25 = 200 секунд или 3 минуты 20 секунд

Одну секунду реального времени мы смотрим целых 3 минуты. Можно в деталях рассмотреть выстрел пистолета под водой.

После таких расчётов становится понятно почему Slow Mo Guys не выкладывают свои ролики в 60 FPS. Мы просто увидим меньше деталей.

5 000 * 1 / 60 = 83 секунды или 1 минута 22 секунды

Также, есть противоположность для слоумоушна — timelapse. Снимаем видео с меньшей частотой, а проигрываем с большей. Ставим штатив на балкон и делаем одну фотографию в день на протяжении года. Получается, что у нас получилось видео с частотой кадров — 1 кадр в день. За год у нас получилось 365 кадров. Теперь мы включаем скорость 25 FPS. В итоге, получаем 365 / 25 = 14,6 секунд в которые уместился целый год.

Игры

Почему тогда играм недостаточно 25 FPS? А нужно намного больше: 60 или даже 100 FPS.

Как написано в абзаце про фильмы с 60 FPS — камера всегда снимает с небольшим размытием в движении. Компьютер же создаёт абсолютно чёткие изображения. Из-за этого мозгу сложнее складывать их в непрерывную картинку. И чем больше движения в игре, тем больше чётких кадров нам нужно для корректного восприятия.

Для сапёра нам хватит и 2 FPS. Два раза в секунду компьютер будет обновлять изображение на мониторе и показывать попали мы в бомбу или нет. А для Counter-Strike не хватит и 30. Просто потому, что движения там слишком динамичные.

Конечно, игры научились включать искуственное размытие, но оно похоже только мешает игровому процессу. По крайней мере, я не знаю ни одного человека, который включает моушн-блюр в играх. Да и система лишний раз нагружается.

На восприятие также влияет то, что фильмы мы смотрим с постоянной кадровой частотой. В играх же, в зависимости от происходящего, FPS меняется. Как только FPS резко падает, мозг сразу же замечает это. То же самое было бы и с фильмами, если бы кадров в секунду было то 25, то 60.

FPS для игр важен не только для комфортного восприятия игры. Частота кадров равна частоте обновления физической модели. Это значит, чем больше FPS, тем чаще компьютер проверяет сделали вы выстрел или нет. Иногда эти доли секунды важны.

Похоже, что всё, что хотел рассказать — рассказал. Вот кратко все тезисы этой заметки.

Итоги

1) Первый фрейм рейт — 16 FPS
2) Звук увеличил кадровую частоту и сделал её постоянной — 24 FPS
3) Частота электросети определила новую кадровую частоту для телевизоров — 25 FPS и 30 FPS
4) Цвет превратил 30 FPS в 29,97 FPS из-за того, что не дружил со звуком
5) Фильмы в 60 FPS плавнее
6) Слоумоушн — снимаем с бóльшим FPS, смотрим с меньшим. В таймлапсе наоборот
7) Игры генерируют абсолютно чёткие кадры, поэтому нужно больше FPS, чтобы создать плавное движение
8) В фильмах кадры в секунду постоянные, в играх зависят от ситуации

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *