Что нужно знать о процессорах?
Бывает довольно сложно объяснить старшему поколению, почему современные смартфоны стоят очень дорого. Наши гаджеты настолько эволюционировали, что функционал телефона в современных устройствах стал придаточным. По сути, мы пользуемся маленьким компьютером, который, как и раньше может осуществлять звонки.
Наши стационарные компьютеры, мобильные компьютеры, ноутбуки выполняют огромное количество задач, но разве вы не задумывались, что происходит внутри этих устройств? Что выполняет роль «мозга» системы? Конечно процессор.
Давайте разберёмся в основных понятиях и терминах современных процессоров.
Архитектура
Существуют разные архитектуры процессоров. Более того, большинство программ заточено под определённую архитектуру – 64Bit или 32Bit. Такие программы поддерживают определённую архитектуру процессора.
Процессор, имеющий 32-битную архитектуру, может обрабатывать 32 бита информации за один цикл. Аналогично и с 64-битными процессорами.
Кроме того, количество поддерживаемой оперативной памяти (RAM) так же зависит от архитектуры процессора.
Процессорам с 16-разрядной архитектурой доступны смехотворные по современным меркам 64 КБ оперативной памяти. 32-битному процессору доступны 4 ГБ памяти (существуют серверные версии Windows с возможностью использования большего количества памяти). А для 64-битного процессора это 16 эксабайт.
Ядра
Ядра это обрабатывающие ячейки процессора. Они получают инструкции и действуют на их основе. В упрощённом понимании, чем больше у вас ядер, тем лучше скорость обработки. Представьте рабочих фабрики. Чем больше рабочих, тем быстрее обрабатываются материалы.
Но большое количество рабочих потребует больших средств на зарплату. Большое количество ядер, однозначно, увеличит скорость обработки, но одновременно потребуется больше энергии, а также процессор будет существенно сильнее нагреваться.
Тактовая частота
Часто мы слышим, что процессор имеет 3,2 ГГц или 3,6 ГГц или 4,0 ГГц. Что вообще такое ГГЦ?
ГГц это аббревиатура от слова Гигагерц. Приставка «гига» означает «миллиард», а герцы – это стандартная единица измерения частоты в микроэлектронике, в аббревиатуре ГГЦ обозначающая «цикл в секунду». Таким образом, процессор с частотой 2 ГГц может выполнять 2 миллиарда циклов за одну секунду.
Этот термин иногда заменяют аналогичным «частота» или «тактовая частота» вашего процессора. Чем выше число, тем лучше выбранный процессор.
Кэш процессора
Кэш микропроцессора – это маленький блок внутри процессора, который хранит немного памяти. Каждый раз, когда нам нужно выполнить какую-то задачу поток данных должен перейти из ОЗУ в процессор. Процессор работает гораздо быстрее, чем оперативная память, поэтому большую часть времени процессор находится в режиме ожидания и ждёт данные из ОЗУ. Чтобы этот процесс выполнялся эффективно, ОЗУ постоянно пересылает данные в кэш процессора.
В обыкновенных десктопных процессорах среднего класса в вашем распоряжении порядка 2-3 Мб кэша. В процессорах high-end уровня и специализированных решениях для «тяжёлых» задач – от 6 Мб и выше. Чем больше кэш вашего процессора, тем лучше.
Литография (техпроцесс)
Литография процессора или техпроцесс, по которому изготовлен кристалл, связаны с размерами используемых транзисторов. Обычно техпроцесс измеряется в нанометрах, и чем меньше число, тем компактнее и энергоэффективнее ваш процессор. Современная высокотехнологичная литография позволяет увеличить количество ядер в одном слоте и снизить потребление энергии.
Средний показатель литографии актуальных процессоров колеблется в пределах 14-32 нм.
Thermal Design Power (TDP) или требования по теплоотводу
Этот показатель представляет собой мощность в ваттах, которую рассеивает процессор во время загрузки всех ядер и базовой частоте. Чем ниже этот показатель, тем лучше для процессора. Более низкий TDP позволяет разгонять процессор до более высоких частот, и означает, что выделяется меньше тепла для рассеивания.
Стандартные десктопные процессоры обычно потребляют больше энергии и имеют TDP в районе 40 Вт и выше, в то время как их мобильные аналоги в 3 раза меньше энергии и почти на столько же холоднее.
Поддержка оперативной памяти
В рамках разбора термина архитектура мы уже упоминали поддержку оперативной памяти. Но это справедливо только для теории. Максимальное количество поддерживаемой памяти как правило оговорено производителем в характеристиках процессора. В них так же содержится информация о поддерживаемой версии DDR.
Разгон (оверклокинг)
Мы уже говорили о тактовой частоте, так вот, разгон, это увеличение тактовой частоты процессора для более высокой производительности. Как правило, разгоном занимаются геймеры, пользователи, использующие тяжёлые программы для обработки видео или фотографий, и просто энтузиасты компьютерного железа в виде своего рода развлечения/соревнования.
Разгон доступен большинству высокопроизводительных процессоров, нужен лишь разблокированный множитель (коэффициент умножения). Опытные оверклокеры знают, что даже если множитель заблокирован, то разгон (повышение частоты) возможен по шине, за счёт увеличения её частоты. Но! Если вы плохо знакомы с точной настройкой показателей процессора и не разбираетесь в настройках BIOS своей материнской платы, делать разгон процессора вам не стоит. Это не безопасно и может привести к поломке.
Hyper-Threading (Гиперпоточность или мультипоточность)
Когда стало очевидно, что добавление ядер не может оставаться лучшим решением для удовлетворения потребности в ускоренной обработке, был изобретена технология Hyper-Threading – виртуальные ядра процессора, позволяющие воплотить идею мультипоточности.
В итоге, когда мы говорим о двухъядерном процессоре с технологией Hyper-Threading это значит, что он имеет 2 физических ядра и 2 виртуальных ядра. Таким образом, технически вы получаете четырехъядерный процессор в корпусе двухъядерного процессора.
Выводы
Процессоры имею множество характеристик и переменных, связанных с ними. Мы знаем, что процессор это ключевая часть любого современного цифрового устройства. Поэтому перед выбором устройства очень важно изучить характеристики его процессора и учесть все вышеперечисленные свойства.
Для лучшей производительности такие вещи как частота, количество ядер, кэш процессора должны быть выше, в то время как техпроцесс, TDP должны быть, чем ниже, тем лучше.
Выставляйте правильные характеристики в системе фильтров buyon.ru и выбирайте лучший процессор для своей системы.
Всё ещё есть вопросы? Напишите в комментариях!
Россия сама сможет производить 7-нанометровые CPU? Институт прикладной физики РАН создаёт первый отечественный литограф для производства микроэлектроники по современным техпроцессам
В Институте прикладной физики Российской академии наук (ИПФ РАН) ведётся разработка первой отечественной установки литографии для производства микроэлектроники по современным технологическим процессам.
Сейчас создан демонстрационный образец, который разработчики называют «прототип прототипа». На этой установке получены отдельные изображения на подложках с разрешением до предельных 7 нм. Сейчас в России в промышленных масштабах могут работать с микроструктурами только более 65 нанометров (в основном 90 нм и более). Тем не менее пока говорить о грандиозном прорыве немного рано — нужно пройти три этапа разработки за 6 лет до появления полноценного промышленного оборудования.
В 2024 году должна быть готова «альфа-машина». Уже с этого момента установка станет рабочим оборудованием и будет рассчитана на проведение полного цикла операций. Однако упор на этом этапе будет сделан не на высокую скорость её работы или разрешение, а на полноценную реализацию всех систем. Однако и этого должно быть достаточно, чтобы разработка стала привлекательной для инвесторов и фабрик, особенно с учётом конкурентной стоимости самой установки и её обслуживания.
На втором этапе в 2026 году появится «бета-машина». Системы будут улучшены и усложнены, увеличится разрешение, повысится производительность, многие операции будут роботизированы. Установку уже можно будет применять на масштабных производствах, что и будет сделано — на этом рубеже важно интегрировать её в реальные технологические процессы и отладить, «подтянув» соответствующее оборудование для других этапов производства.
Наконец, на третьем этапе (2026–2028 годы) российский литограф получит более мощный источник излучения, улучшенные системы позиционирования и подачи, станет работать быстро и точно.
Несмотря на то, что отечественный 7-нанометровый техпроцесс будет освоен ещё не скоро, работы тянут на настоящую технологическую революцию — со времён СССР в России нет своего литографического производства, а текущий уровень в 65–90 нм достигнут после приобретения уже ненового иностранного оборудования в конце 2000-х годов. Здесь же речь идёт именно о разработке своего и, что особенно важно, по оригинальной технологии.
Мировой технологический лидер в литографии компания ASML использует систему EUV-литографии уже около 20 лет. Специалисты отмечают сложность данной технологии плюс большие размеры используемого ультрафиолетового источника излучения. У иностранцев фотолитография заточена под массовое производство очень больших объёмов. В России стоит задача не захватить мировой рынок, а первоначально обеспечить запросы своего. Поэтому для российского проекта важно качество. Российские физики уже в этом плане создали демонстратор технологии на другом источнике излучения — рентгеновском. При этом наш источник излучения в разы компактнее и чище в работе, что значительно влияет на стоимость, размеры и сложность оборудования. Оптическая система демонстратора, собранная в ИПФ РАН, уже превосходит все аналоги, существующие в мире на сегодняшний день. А на выходе при равной мощности оборудованию ASML источника излучения российская установка будет в 1,5–2 раза эффективнее того, что создано мировым лидером.
21 октября 2022 в 12:55
Как на самом деле делают процессоры? РАЗБОР
Как создаются современные процессоры? Насколько это сложный и интересный процесс и почему так важна некая Экстремальная УФ-литография? В этот раз мы копнули действительно глубоко и готовы рассказать вам об этой магии технологий. Располагайтесь поудобнее, будет интересно.
Вот вам затравочка — 30-килоВаттный лазер в вакууме стреляет по капле олова и превращает ее в плазму — скажете фантастика?
А мы разберемся как это работает и расскажем об одной компании из Европы, которая стоит тенью за всеми гигантами Apple, AMD, Intel, Qualcomm, Samsung и другими и без нее никаких новых процессоров бы и не было. И нет это, к сожалению, не Чебоксарский завод электроники.
Чтобы понять процесс экстремальной ультрафиолетовой литографии — нам надо для начала понять, что вообще такое фотолитография. Сам процесс по своей сути очень похож на то как печатаются фотографии с пленочных негативов на фотобумагу! Не верите — сейчас все объясним.
Фотолитография
Начнем с простого примера — возьмем прозрачное стекло и нанесем на него какой-то геометрический рисунок, оставив при этом какие-то участки без краски. По сути, сделаем трафарет. Приложим этот кусок стекла к фонарику и включим его. Мы получим ровно тот же рисунок в виде тени, который мы нанесли на кусок стекла.
В производстве процессоров этот кусок стекла с рисунком называется маска. Маска позволяет получить на поверхности любого материала “засвеченные и незасвеченные” участки любой плоской формы.
Хорошо — рисунок на поверхности мы получили, но это всего лишь тень. Теперь надо как-то его там сохранить. Для этого на поверхность кремниевой пластины наносится специальный светочувствительный слой, который называют Фоторезистом. Для простоты мы не будем тут говорить о позитивных и негативных фоторезистах, почему они так реагируют, все-таки мы не на уроке Физической химии. Просто скажем, что это такое вещество, которое меняет свои свойства, когда на него попадает свет на определенной частоте, то есть на определенной длине волны.
Опять же как и на фотопленке или фотобумаге — специальные слои материалов реагируют на свет!
После того как нужные нам участки на кремнии мы засветили, именно их мы можем убрать, оставив при этом на месте остальные, то есть незасвеченные участки. В итоге мы получили тот рисунок, который и хотели. Это и есть фотолитография!
Конечно, кроме фотолитографии в производстве процессоров участвуют и другие процессы, такие как травление и осаждение, фактически комбинацией этих процессов вместе с фотолитографией транзисторы как-бы печатаются слой за слоем на кремнии.
Технология не новая, почти все процессоры начиная с 1960-х производятся при помощи фотолитографии. Именно эта технология открыла мир полевых транзисторов и путь ко всей современной микроэлектронике.
Но по-настоящему большой скачок в этой области произошел только недавно! С переходом на EUV. И всё из-за длины волны в 13.5 нм. Не переживайте, сейчас объясню!
Длина волны на которой светит наш “фонарик” — это невероятно важный параметр. Именно она и определяет насколько маленьким вы можете получить элементы на кристалле.
Правило максимально простое: Меньше длина волны — больше разрешение, и меньше техпроцесс!
Обратите внимание на картинку. Абсолютно все процессоры начиная с начала 90-х до 2019 года производились с использованием процесса Глубокой УФ-литографии, или DUV литографии. Это то, что было до Экстремальной.
Он основывался на использовании фторид-аргонового лазера, который испускает свет с длиной волны в 193 нанометра. Этот свет лежит в области глубокого ультрафиолета — отсюда и название.
Он проходит через систему линз, маску и попадает на наш кристалл покрытый фоторезистом, создавая необходимый рисунок.
Но у этой технологии тоже были свои ограничения, завязанные на фундаментальных законах физики.
Какой же минимальный техпроцесс возможен? Смотрим на формулу (только не пугайтесь):
Здесь Лямбда — это и есть наша длина волны, а CD — это critical dimension, то есть минимальный размер получаемой структуры. То есть с использованием “старой” DUV литографии можно получить структуры не меньше примерно 50 нм. Но как же это так спросите вы? Ведь производители отлично делали и 14 и 10 нм, а кто-то даже и 7 нм с использованием DUV литографии.
Они пошли на хитрости. Вместо одного засвета через одну единую маску, они стали использовать несколько масок, с разными рисунками, которые дополняют друг-друга. Это процесс получил название множественное экспонирование. Назовем это принципом слоеного пирога!
Да — производители обошли прямые физические ограничения, но физику не обманули!
Появилась серьезная проблема: эти дополнительные шаги сделали производство каждого чипа гораздо дороже, из-за них увеличивается количества брака, есть и другие проблемы.
То есть в теории можно продолжить работать со старой технологией и путем игры с масками и экспонированием (двойная, тройная, четверная экспозиция) уменьшать размеры и дальше, но это сделает процы золотыми. Ведь с каждым слоем процент брака возрастает все выше, а ошибка накапливается!
То есть можно сказать, что DUV — это тупик! Что делать дальше, как уменьшать?
И тут на помощь приходит великая и ужасная технология Экстремальной УФ-литографии, или EUV-литографии!
Посмотрите на фото — оно прекрасно демонстрирует различие двух технологий. Обе получены с использованием 7-нанометрового техпроцесса, но та что слева получена с использованием DUV-литографии и с теми самыми хитростями о которых мы говорили — тройное экспонирование, то есть с поэтапным использованием 3 разных масок. Справа же — технология EUV литографии на 13.5 нанометрах, с использованием одной единственной маски — разница очевидна — границы гораздо четче, лучший контроль геометрии, ну и сам процесс намного быстрее, меньше процент брака, то есть в конце концов дешевле. Вот она дорога в светлое будущее, почему бы сразу так не делать, в чем проблема?
Как работает EUV-литография
Все дело в том, что хоть EUV это та же литография, внутри в деталях все гораздо сложнее и тут ученые и инженеры столкнулись с новыми проблемами!
Сама технология экстремальной УФ-литографии начала разрабатываться в самом начале 2000 годов. В ней используется источник, который излучает свет с длинной волны в 13.5 нанометров — то есть на нижней границе УФ-спектра, близко к рентгену!
В теории этим способом можно создавать структуры уже критических размеров — настолько маленьких, что еще чуть-чуть и на них перестанут действовать законы обычной физики. То есть после 5 нм мы попадаем в квантовый мир!
Но даже эта проблема на данный момент решена. Есть источник — возьми, да и делай себе сколь угодно маленькие процессоры.
Все совсем не так просто!
Проблема таких коротких длин волн в том, что они поглощаются почти всеми материалами, поэтому обычные линзы что были раньше уже не подходят. Что делать?
Для управления таким светом было принято решение создать специальные отражающие зеркальные линзы. И эти линзы должны быть гладкими! Очень гладкими. Практически идеально гладкими!
Вот вам аналогия — растянем линзу до размеров, скажем, Германии, так вот ее поверхность должна быть такой гладкой, что ничего не должно выпирать больше чем на 1 миллиметр. Этот параметр называется шероховатостью линзы и у нужной нам он должен быть меньше 0.5 нанометра. Это уже близко к размерам АТОМА! Кто же сможет подковать блоху?
Конечно, Zeiss — только они на это способны! Да — та самая компания Zeiss, чьи линзы стоят на моем фотике, были в Nokia или во флагманах Sony Xperia.
Одна проблема решена — линзы есть!
Есть и вторая — этот свет рассеивается даже в простом воздухе. Поэтому для того чтобы процесс прошел нормально его надо проводить в вакууме!
Про частички пыли и грязи я вообще молчу — понятно что их там вообще не должно быть. Чистые комнаты на таком производстве на порядки чище, чем операционные в больницах! Люди буквально ходят в скафандрах. Любая, даже самая маленькая частичка грязи, кожи или воздуха может испортить и маску и зеркала!
А что же с источником? Просто поставили специальный лазер на более короткую длину волны и все? Проблема в том, что ни лампочек, ни лазеров, ни каких-либо других нормальных источников света, которые излучают на такой длине волны просто не существует в природе.
И как же тогда получают нужное излучение? Элементарно, Ватсон — нам нужна плазма.
Надо нагреть оловянный пар до температур в 100 раз больших, чем температура поверхности солнца! Всего-то! И за этим стоит почти 2 десятилетия разработок.
В установке для производства процессоров по EUV-литографии, о которой мы поговорим отдельно установлен специальный углекислотный лазер, который опять же может производиться в тандеме всего двух компаний в мире — немецкой фирмой Trumpf и американской Cymer. Этот монстр мощностью в 30 киловатт стреляет по 2 импульса с частотой 50 килогерц.
Лазер попадает в капли олова, первый выстрел фактически плющит и превращает каплю в блин, которая становится легкой мишенью для второго залпа, который ее поджигает. И происходит это 50 тысяч раз в секунду! А образовавшаяся плазма и излучает этот свет в экстремальном УФ спектре.
И естественно, это только самая база, но мы попробовали нарисовать вам картину того насколько это сложный и крутой процесс.
Компания, стоящая за производством всех процессоров
О технологии рассказали, значит ее кто-то придумал и реализовал, но ее разработка оказалась настолько дорогой, что даже крупные гиганты и воротилы не способны потянуть такие бюджеты!
В итоге, чтобы это стало реальностью всем пришлось скинуться — Intel в 2012 году, а TSMC и Samsung где-то в 2015 году приняли участие в общем проекте. Суммарные инвестиции составили, по разным оценкам от 14 до 21 млрд долларов! Из которых почти 10 млрд были вложены в одну единственную нидерландскую компанию ASML. Именно она и стоит за всем производством процессоров в мире по методу EUV-литографии! Вау! Что за ASML и почему мы о ней ничего не слышали? Компания из Нидерландов — что за темная лошадка?
Все дело в том, что ASML создали тот самый инструмент без которого Apple, Самсунг и Intel с AMD фактически как без рук! Речь идет об установке стоимостью более 120 миллионов долларов. Она огромная, 180-тонная, потребляет почти 1 мегаватт электроэнергии, и ей нужно почти 1.5 тонны воды в минуту для охлаждения! Но даже при такой цене очереди на них стоят годами ведь в год этих машин производится несколько десятков штук.
Тут же стоит упомянуть немалый вклад российских умов. Например, один из создателей этой технологии — Банин Вадим Евгеньевич, сейчас директор по разработке в ASML. Также в компании работают и другие наши соотечественники!
Мы выяснили, что эта компания делает одни из самых технологичных девайсов, в котором собраны все знания человечества и на них производят процессоры все IT-гиганты сразу!
Но не только ASML стоит за спиной нам известных IT-гигантов. Их установки состоят из более чем 100 тысяч деталей, которые производятся более чем тысячью компаний по всему миру. Все эти компании связаны друг с другом!
Будущее
Но что же будет дальше! Вы что — думали, что мы оставим вас оставим в дне сегодняшнем? Нет — мы подглядели в будущее! Мы раздобыли информацию что будет после пяти или даже двух нм!
Во-первых, прямо сейчас, пока вы смотрите это видео, TSMC уже штампует новые процессоры для HUAWEI, Apple и Samsung с использованием EUV-литографии, но не на 7 нм, как было с Apple A13 и Kirin 990, а на 5 нм техпроцессе! И этому есть множества подтверждений! И о них мы услышим уже этой осенью. Как вам такое — A14 Bionic будет 5нм! Так же ждем новые Exynos на 5 нм и процессоры Google, о которых мы рассказывали отдельно! Qualcomm наверняка тоже подтянется за ними, но тут мы не располагаем данными!
А во-вторых, и это вообще взрывает мозг, ASML уже заканчивает разработку установок, которые позволят производить процессоры на 2 нанометровом техпроцессе и даже меньше всего через 4-5 лет!
Для этого ребята из нидерландской компании совместно с немецкой Zeiss разработали новые зеркальные линзы, с высокими значениями апертуры. Это анаморфная оптика — она и многое другое позволит увеличить разрешающую способность.
Сам процесс по сути тот же EUV, но с приставкой High-NA EUV. А сами агрегаты будут занимать еще больше места, посмотрите вот так для них делают оптику!
Этот год тяжелый для всех, но в тоже время — посмотрите какими шагами начинают развиваться технологии, все шире и шире. Нас ждут новые процессоры с мощностями, которые нам и не снились.
Кроме этого развиваются совершенно новые типы процессоров такие как NPU — для нейровычислений.
Физика вашего процессора
Мы привыкли, что в нашем компьютерном мире больше – значит лучше. Чем больше ядер или частота процессора – тем быстрее он работает. Чем больше объем памяти – тем больше информации в нем можно хранить. Однако есть у кремниевых чипов один параметр, работающий ровно наоборот, чем он меньше – тем лучше.
Он называется техпроцессом. Мы уже говорили о нем в одном из предыдущих роликов, где рассказали о физической сути технологического процесса и о маркетинговых обманах современности. Но как техпроцесс влияет на производство современных чипов? Почему в его случае уменьшение – это хорошо? Что такое фотолитография? Давайте об этом сегодня и поговорим.
Фотолитография и техпроцесс – как они связаны?
Давайте вспомним, что такое техпроцесс? Это процесс получения определенного рисунка на поверхности материала. Для того, чтобы рисунок имел определенную форму, свет проходит через специальную фотомаску. Идеальная аналогия здесь – рентгеновский снимок. Кости лучше блокируют это излучение, поэтому их и отчетливо видно на итоговом снимке, в отличие от плоти, через которую рентгеновское излучение проходит более свободно.
Но вернемся к фотолитографии. На самом деле сам этот процесс чем-то похож на старый принцип получения фото, только с постобработкой. Свет, проходя через фотомаску, попадает на чистейшую кремниевую пластину, предварительно покрытую фоточувствительной пленкой – так называемым фоторезистом. Участки, на которые попал свет, засвечиваются и в дальнейшем удаляются в проявителе, и тем самым на пластине остается рисунок ключа – по сути фото всех транзисторов будущих процессоров.
А дальше в ход идет травление, электроосаждение и вакуумное напыление, чтобы рисунок превратился в полноценные транзисторы, проводящие ток когда их об этом попросят. Казалось бы, ничего сложного – но почему тогда каждый новый техпроцесс сейчас дается с боем? Кто является ограничителем?
Ответ вас удивит – длина волны используемого излучения. Все просто: именно свет, проходя через маску, оставляет на фоторезисте реальные очертания транзисторов. И если использовать видимый свет, минимальная длина волны которого составляет около 380 нм в фиолетовой области спектра, то не получится с его помощью создать транзистор, наименьшая часть которого ощутимо меньше этой длины волны, даже если использовать линзы.
Так что все просто: наименьшая часть транзистора – это ширина его затвора, и она, как видите, напрямую связана с длиной волны используемого света. Поэтому такую важную характеристику, которая напрямую говорит о «тонкости» чипа, решили выделить и назвать техпроцессом.
Правда, так продолжалось где-то до середины нулевых, пока не пришли маркетологи и не начилась вакханалия с подтасовками, которая привела к тому, что фейковые 10-нм от Intel теперь назвали еще более фейковым техпроцессом Intel 7, другие компании делают тоже самое.
Но почему производители так сильно гонятся за уменьшением размеров транзисторов? Почему бы не делать микрометровые чипы, как в 80-ые?
А вот тут с двух ног врывается ее величество физика.
Во-первых, чем меньше размер транзистора при прочих равных, тем меньше он выделяет тепла, так как току физически приходится проходить меньший путь, а КПД в 100% не бывает. С другой стороны, самый действенный способ поднять производительность – это увеличить количество транзисторов, благодаря которым и творится магия вычислений.
Но при этом есть и третий фактор – это возможность по теплоотводу. 100, 200, 300 Вт – для отвода которых уже потребуется СЖО, что едва ли смогут себе позволить большинство пользователей. Вот и получается, что для увеличения производительности нужно увеличивать количество транзисторов, а чтобы обуздать рост тепловыделения – нужно постоянно снижать техпроцесс.
При этом наращивать количество транзисторов – задача максимально простая, именно поэтому мы от 3 миллионов переключателей в Pentium из 1995 года пришли к более чем 10 млрд в топовых Ryzen 5000. То есть рост за 25 лет – на три порядка, при этом техпроцесс даже с маркетинговой точки зрения уменьшился лишь в несколько десятков раз, с 350 до 7 нм, а на деле и того меньше.
И, как итог, если Pentium потребляли от силы 10-15 Вт, то вот топовые ряженки доходят до 150 и даже 200 Вт, что близко к пределу охлаждения в десктопах. И это отлично показывает, почему все производители из кожи вон лезут, чтобы продолжать уменьшать техпроцессы и снижать жор чипов.
Но это – не единственная проблема, которую подбрасывает бессовестная наука. Современные процессоры достигли уже настолько высоких частот, что скорость света перестает казаться чем-то бесконечным. Например, возьмем чип с частотой в 3 ГГц – то есть он совершает 3 миллиарда тактов в секунду.
С учетом скорости света в 300 000 км за эту же секунду мы получаем, что за один такт электромагнитная волна успеет пролететь… всего 10 сантиметров. Казалось бы, процессорные кристаллы меньше, но не забываем, что внутри них извилистые лабиринты миллиардов транзисторов, из-за чего пути внутри чипа могут быть достаточно длинными, чтобы требовалось учитывать скорость света и отставание по тактам в разных частях кристалла.
Именно поэтому мы и не видим огромных кремниевых чипов – рассчитать все возможные отставания по тактам крайне сложно, и разумеется это негативно сказывается на итоговой производительности. Второе ограничение на размер – брак: чем больше и сложнее кристалл, чем он дороже и выше шанс не кондиции.
Получается еще одна ловушка: толстый техпроцесс плюс ограничение на размер кристалла – значит, меньше транзисторов поместится в сам кристалл и меньше будет производительность. Выход тут очевиден – все проблемы решит уменьшение техпроцесса. Но есть костыль и иного рода, и называется он чиплет.
Идея максимально проста: раз не получается создать огромный чип, то почему бы не создать несколько маленьких и объединить их общей шиной с известной одинаковой задержкой. Таким образом убиваются сразу оба зайца: мелкие чипы проще производить, они дешевле и среди них меньше брака. К тому же снимается вопрос с внутрикристалльными задержками.
По этому пути и пошла AMD: например, ее Ryzen 3000 и 5000 имеют внутри по три кристалла, два с ядрами и один с контроллерами, объединенные общей шиной Infinity Fabric. Работает такая схема? Их пользователи явно ответят «да». А увеличившуюся межъядерную задержку из-за пары кристаллов с успехом решает большой объем кэша L3.
Но, повторюсь, чиплеты – все равно костыль: в случае с теми же Ryzen крошечные кусочки кремния размером с ноготь легко греются под сотню градусов, то есть по итогу мы снова приходим к все тому же выводу: нужно снижать техпроцесс.
Жесткий ультрафиолет
И у многих в голове наверное вертится вопрос – а в чем проблема-то его снизить? Ну хорошо, он зависит от длины волны используемого при фотолитографии света, и видимое излучение не подходит. Но в чем проблема использовать тот же ультрафиолет, который простирается до 10 нм? И его как раз и используют!
Например, УФ-излучение с длиной волны в 248 нм позволяет при помощи системы линз создавать полупроводники с минимальными размерами около сотни нанометров. Но, если мы посмотрим на современные чипы, там линейные размеры могут быть в несколько десятков нанометров. Как этого удалось добиться?
Правильно, дальнейшем снижением длины волны и уходом в экстремальный ультрафиолет.
А в чем проблема, спросите вы? В самом оборудовании. Когда речь идет о десятках нанометров, то приходится работать уже буквально с конкретными атомами, ведь шаг кристаллической решетки кремния всего 0.5 нм.
Поэтому для фотолитографии в жестком ультрафиолете используются зеркала всемирно известной компании Zeiss, который отполированы настолько, что ради убирания дефектов сбивают с поверхности отдельные молекулы!
Резко усложняются и сами фотомаски. Если для литографии в ультрафиолете нередко достаточно однослойной маски из хрома, то для экстремального ультрафиолета используются шаблоны с 40 слоями кремния и молибдена.
Там уже идут физические эффекты на грани квантов, когда даже с одной длиной волны из-за дифракции чипы на пластине получают различные характеристики, кому интересно – гуглите условие Брэгга.
И да, в случае с жестким ультрафиолетом маски, линзы и зеркала поглощают 95% изначального излучения. То есть для прохождения самой магии фотолитографии лазеры должны быть на порядок мощнее, чем при обычном ультрафиолете.
Для лучшего понимания, одна современная установка ASML для литографии в жестком ультрафиолете может потреблять под полтора мегаватта (68 стр), причем до самих кремниевых вафель долетит лишь 10 кВт. Да, КПД тут – 1%. Паровоз эффективнее на порядок. К слову, такой станок позволяет обрабатывать около 2 пластин в минуту.
Короче говоря, такая фотолитография – это предел современной науки на стыке с чудесами инженерии. И все для того, чтобы достичь шага в десяток нм в кремниевых полупроводниках и позволить дальше наращивать число транзисторов без ухода TDP в облака.
И это отчасти объясняет, почему процессоры из года в год становятся все дороже. Например, в случае с Intel их 10-нанометровые чипы, такие как Core 12-ого поколения, обходятся компании вдвое дороже, чем 28-нм Core 4-ого поколения.
И каждый новый техпроцесс, даже будучи маркетинговым, требует огромных затрат на сложнейшие станки и ученых, лезущих в самые глубины мироздания.
Но что дальше? Рано или поздно мы придем к пределу и в случае с жестким ультрафиолетом. Сейчас лучшие станки ASML имеют разрешающую способность в 13 нм, что всего на три нанометра больше теоретической границы, которая разделяет ультрафиолет и рентген. Так что рано или поздно придется окунуться еще глубже – в рентгеновскую литографию, которая позволит создавать проводящие структуры размерами в нанометры или даже десятые доли нанометра.
Звучит круто! Проблема лишь в том, что в сравнении с рентгенолитографией жесткий ультрафиолет покажется мягким и пушистым. Во-первых, оборудование станет еще дороже. Для эффективного блокирования рентгеновского излучения потребуются маски из золота, тантала или вольфрама.
При этом подложку для маски, прозрачной для рентгена, придется делать, возможно, из алмаза. А ведь это – лишь вершина айсберга. В случае с ренгеном мы имеем дело с настолько высокоэнергетическим излучением, что его носители при попадании в вещество способны генерировать мощное вторичное излучение с пробегом в десятки нанометров, которое может серьезно изменить «рисунок ключа» на кремниевой пластине. А еще начинает серьезно влиять такое явление, как ионизация, которая генерирует свободные электроны. В общем, проблем с точки зрения физики в рентгенолитографии – вагон и маленькая тележка, и ученые со всего мира уже пытаются их решить.
Одно уже ясно – это будет концом кремния. Литография в рентгене позволит дойти до размеров кристаллической решетки кремния, то есть уменьшать техпроцесс дальше просто не получится. Однако конец кремния – не конец чипов, о чем мы поговорили в одном из предыдущих роликов.
Поддержать
1 год назад
2 чая этому господину за текстовый формат
1 год назад
1 год назад
Шикарный пост, подписался на канал!
1 год назад
Было интересно почитать
1 год назад
То есть рост [количества транзисторов] за 25 лет – на три порядка, при этом техпроцесс даже с маркетинговой точки зрения уменьшился лишь в несколько десятков раз, с 350 до 7 нм,
Так в чём проблема? Количество процессоров — это объём, который кубически растёт с линейными размерами (техпроцессом). Несколько десятков в кубе — это как раз 3 порядка.
Похожие посты
1 месяц назад
Рейтинг оборудования пользователей Steam, август 2023 года
Видеокарты с 8 Гб памяти стоят уже у 30% игроков, а восьмиядерные CPU у 20%.
Инфографика: #рейтинг оборудования пользователей Steam, август 2023 года
Показать полностью 1
Поддержать
1 месяц назад
В Китае разработали технологию, которая приведёт к 1-нм чипам — 300-мм пластины научились покрывать атомарно тонкими плёнками
Китайские учёные сообщили о создании технологии массового производства подложек с атомарно тонкими полупроводниковыми слоями. Новая технология масштабируется до производства 12-дюймовых (300-мм) подложек — самых массовых, продуктивных и наибольших по диаметру пластин для производства чипов. С такими пластинами транзисторы с затвором размером 1 нм и меньше станут реальностью, что продлит действие закона Мура и выведет электронику на новый уровень.
Современные технологии наращивания слоёв на подложках работают по принципу осаждения материала из точки распыления на поверхность. Для нанесения плёнок толщиной в один атом или около того на крупные пластины эта технология не предназначена. С её помощью можно инициировать рост равномерной по толщине плёнки только на небольшие пластины — примерно до 2 дюймов в диаметре. Для пластин большего диаметра и, тем более, для 300-мм подложек этот метод не годится.
В интервью изданию South China Morning Post профессор Пекинского университета Лю Кайхуи (Liu Kaihui) сообщил, что его группа разработала технологию производства атомарно тонких слоёв на любых подложках вплоть до 300-мм. В основе технологии лежит контактный метод выращивания плёнки с поверхности на поверхность. Активный материал входит в контакт с подложкой сразу по всей её поверхности, давая старт для роста плёнки равномерно во всех её точках. В зависимости от типа активного материала могут быть выращены плёнки нужного состава и даже множество плёнок друг на друге, если это потребуется.
Кроме того, учёные разработали проект установки для выращивания атомарно тонких плёнок в массовых объёмах. Согласно расчётам, одна такая установка может выпускать до 10 тыс. 300-мм подложек в год. Эта же технология подходит для покрытия подложек графеном, что позволит, наконец, внедрить этот интересный материал в массовое производство чипов.
Следует сказать, что учёные заглянули далеко вперёд. Сегодня 2D-материалы (толщиной в 1 атом) только исследуются на предмет использования в структурах 2D-транзисторов и в других качествах. До массового производства подобных решений ещё очень далеко, и предстоит провести много научной работы, пока она не воплотится в серийной продукции. Но это важнейшее направление, которое позволит совершить прорыв в производстве электроники и китайские производители внимательно следят за успехами своих учёных.
Показать полностью 1
3 месяца назад
Самое популярное оборудование у игроков в Steam
Инфографика: рейтинг оборудования пользователей Steam, июнь 2023 года
Показать полностью 1
Поддержать
4 месяца назад
Intel построит новый завод в Израиле за рекордные 90 млрд шекелей
Показать полностью 2
Поддержать
5 месяцев назад
Настало время, когда чипы с ИИ делают чипы
Сейчас практически все крупные чипмейкеры сейчас используют инструменты EDA с поддержкой ИИ.
Поддержать
5 месяцев назад
Красная машина
Согласно данным Mercury Research AMD занимает уже более трети рынка процессоров
Показать полностью 1
Поддержать
5 месяцев назад
Исследователи из Швеции разработали и испытали первые в мире деревянные транзисторы
Древесная электроника может обеспечить «электронный контроль над живыми растениями». Ученые создали деревянный транзистор.
Поддержать
6 месяцев назад
Красный кэш vs реальность
Привет Пикабу! Год назад AMD запустила пробный процессор 5800X3D с увеличенным объемом кэша третьего уровня, и из-за своей отличной игровой производительности он имел оглушительный успех. Поэтому не удивительно, что в линейке Ryzen 7000 компания развернулась по-полной – есть и 8, и 12, и даже 16-ядерный X3D-камень, там суммарно под 150 МБ кэша: в такой объем можно без проблем положить Windows 95 .
Но в этот раз чуда не случилось – есть вопросы и к производительности, и к надежности, да и немало подводных камней, про которые AMD старалась особо не афишировать. Поэтому давайте разбираться, что это еще за кеш, стоит ли рассматривать в покупке процессоры Ryzen 7000X3D, что нужно знать и почему вы должны забыть про их покупку на Ali или Avito.
Минутка (нет) теории
И для начала – что такое кэш? Это небольшой объем очень быстрой памяти, которая находится максимально близко к вычислительным блокам процессора и нужна для ускорения работы.
Все дело в том, что с точки зрения процессора ОЗУ находится далеко, и это стало проблемой для десктопных камней уже в 90-ые, когда они перешагнули за сотню мегагерц. Это привело к тому, что время такта снизилось до единиц наносекунд, тогда как обращение к памяти занимает на порядок, а то и два больше.
Решение в Intel придумали быстро: снабдили процессор небольшим объемом собственной памяти, доступ к которой занимает один, в худшем случае несколько тактов. Хранение в таком кэше инструкций и важных данных позволяет ощутимо снизить время ожидания информации вычислительными блоками, что и вылилось в прирост производительности.
Но почему тогда до последнего времени никто не задумывался о кэше? Да, многие знают, что в современных CPU он имеет три уровня , различающихся по скорости доступа и объему, и суммарно достигает несколько десятков мегабайт – и на этом все.
Ответ тут прост: последний раз проблема с кэшем остро стояла лишь в начале нулевых, когда простым Celeron кэша второго уровня ощутимо не докладывали – всего 128 КБ против 256 или даже 512 КБ у Pentium 4 на LGA478. Тогда это приводило к тому, что на одинаковых частотах сельдерей мог на 20-30% проигрывать пеньку.
Дело в том, что в то время кэш был дорогим и проблемным, как и любая другая новая технология, и при этом, как и сейчас, занимал большую часть площади чипа – поэтому для удешевления производства процессоров чаще всего резали именно его. Уже к середине нулевых с выходом LGA775 проблемы были решены, и даже базовым Core 2 Duo щедро насыпали аж 4 МБ кэша, тогда как поздние Core 2 Quad могут похвастаться уже 12 МБ быстрой памяти L2.
И с тех пор прогресс в кэше сильно замедлился. Да, появился еще более низкий уровень L3, доступ к которому могла иметь даже интегрированная графика, но в целом формула в 2-3 МБ кэша на ядро с тех пор не менялась, потому что процессорам буквально не нужно было больше для данных для быстрого доступа.
Именно поэтому вышедшее в 2014 году 5-ое поколение процессоров Intel, оно же Broadwell, с треском провалилось: попытка добавить 64-128 МБ памяти eDRAM, или кэша уже четверого уровня на отдельной микросхеме, давало реальный прирост лишь в единичных задачах, где нужно работать с большим объемом предсказуемых данных – например, при архивировании.
В играх, при работе с мультимедией и графикой новинки нередко оказывались даже хуже предшественников из-за более низких тактовых частот.
Хотя, конечно, полностью тупиковым eDRAM не стал: как раз в 5-ом поколении Intel ощутимо бустанула свою интегрированную графику Iris, которая также имела доступ к этой памяти. Как итог, это породило несколько линеек ультрабуков, которые были способны тянуть на интегряшках свежие на тот момент игрушки, включая третьего ведьмака на минималках. Но, разумеется, в случае с десктопами это было мало кому интересно, поэтому с выходом Skylake Intel предпочла забыть об L4.
5800X3D – когда кэш помог
И вот, спустя почти 10 лет после выхода пятитысячных интелов, AMD резко анонсирует 8-ядерный Ryzen 5800X3D с дополнительной микросхемой кэша L3 на 64 МБ.
Производить его было нелегко – дополнительный кэш идет вторым этажом над кристаллом с ядрами, и чтобы бутерброд влез по толщине под крышку, пришлось срезать 95% пустого кремния, доводя толщину ядерного чипа всего до 0.02 мм.
Бонусом идет использование самого свежего степпинга B2, что позволило снизить рабочие напряжения, а также пониженные на пару сотен мегагерц частоты относительно обычного 5800X. Ну и вишенка на торте – такой процессор не получится разогнать традиционными методами через BIOS. AMD объясняет это нежностью кристалла с 3D V-cache, который просто не переживет повышение напряжения.
Но самым интересным был вопрос о том, какой прирост производительности даст утроенный объем кэша L3? Ведь за последние десятилетие мы уже привыкли к тому, что информацию о кэше нам подают вскользь, и никто уже давно не изучает его влияние на производительность – да и такой возможности не было, что AMD, что Intel урезают кэш обычно вместе с ядрами, и последние очевидно влияют сильнее.
С другой стороны, у Ryzen из-за чиплетной структуры всегда были проблемы с задержками доступа к ОЗУ, поэтому именно такие камни должны лучше всего отзываться на увеличение объема кэша. Более того, решения AMD с одним «ядерным» кристаллом оказываются по скорость записи данных в память аж вдвое медленнее, чем старшие 12- и 16-ядерные Ryzen с двумя кристаллами – эту проблему также призван решить увеличенный кэш.
Собственно, так и оказалось – конечно, с лозунгом, что Ryzen 5800X3D — лучший игровой процессор, AMD погорячилась, все-таки лучший камень от Intel на тот момент, i9-12900KS, был слегка быстрее в играх, хотя и ощутимо дороже и горячее.
Но прирост относительно обычного 5800X даже с учетом чуть большей частоты последнего был серьезным – в среднем около 20%. Даже 16-ядерный 5950X в играх был хуже – хотя здесь уже ничего удивительного, единичные проекты могут загрузить работой три десятка потоков.
Но вот в рабочих задачах ситуация оказалась куда скромнее: в большинстве программ 5800X оказывался даже быстрее, лишь с жадным до памяти архивированием 5800x3D слегка вырвался вперед. И это понятно: вычислительные задачи предсказуемы, что позволяет обойтись меньшим объемом кэша для подпихивания процессору данных в быстром доступе.
Особенно если учесть, что 32 МБ у 8-ядерного 5800X – это больше, чем у 16-ядерного i9-12900K, который довольствуется только 30 МБ.
А вот в случае с играми предсказуемость меньше, да и нередко нагрузка на память высокая, поэтому большой объем кэша действительно нивелирует большие задержки доступа к ОЗУ.
В итоге на AM4 всех все устраивало: хочется максимальную производительность в играх от 5-летного сокета на уровне 12-ого поколения процессоров Intel? 5800x3D – отличный выбор даже для не самых топовых плат с такой себе реализацией VRM, так как процессор сам по себе достаточно энергоэффективный из-за отборного чипа и сниженных частот. Хочется максимальную производительность в рабочих задачах? Есть 16-ядерный 5950X, который навязывает конкуренцию i9-12900К.
Нужно отдать должное – AMD закрыли эпоху AM4 с лучшей стороны.
Так что теперь остается ответить лишь на два вопроса – почему Intel не вернулась к технологии eDRAM и какими вышли Ryzen с 3D V-cache на AM5?
В случае с Intel ответ простой – в увеличенном кэше нет нужды. Компания продолжает использовать один монолитный кристалл со всеми ядрами и контроллерами внутри, в отличие от разнокристалльных Ryzen. Как итог, у синих задержки доступа к ОЗУ и между ядрами ощутимо ниже, чем у красных, поэтому процессоры Intel комфортно себя чувствуют с относительно небольшим объемом кэша – который, в любом случае, компания время от времени слегка увеличивает.
При этом в следующем 14-ом поколении процессоров Intel, по слухам, перейдет на чиплетную структуру и вернется к идее кэша L4, который будет отдан интегрированной графике. С учетом того, что последняя будет на архитектуре Arc – Intel вполне может побороться за звание производителя лучшей интегрированной графики с AMD, которая до сих пор лидер в этой области.
Ryzen 7000x3d – фокус не (совсем) удался
Что касается AMD, то компания продолжила использовать чиплетную архитектуру, как итог – Ryzen 7000 имеют 1 или 2 кристалла с ядрами и один с контроллерами ввода-вывода, а также с простенькой интегрированной графикой. То есть контроллер ОЗУ снова отделен от ядер, но AMD сделала все возможное для снижение задержек: у всех Ryzen 7000 частота внутренней шины Infinity Fabric доведена до 2000 МГц, что ранее было доступно только для лучших Ryzen 5000, и то с разгоном. Кроме того, в случае с DDR5 большое влияние имеют именно большие внутренние задержки – поэтому даж е в случае с однокристалльными процессорами Intel переход с DDR4 увеличивает время доступа к памяти до полутора раз.
Как итог, в случае с Ryzen 7000 задержки ОЗУ оказываются сравнимыми с Intel Core 12 и 13 поколений при работе с DDR5 на одинаковой частоте, да и по пропускной способности большой разницы между ними нет.
Но при этом на Intel 13-ого поколения возможности по разгону лучше – можно замахнуться и на 7000 МГц, пробив сотню гигабайт/с пропускной способности. Получается, что увеличенный кэш Ryzen снова нужен?
И да и нет. Начнем с топовых Ryzen 7900X3D и 7950X3D. У них изначально два процессорных кристалла по 32 МБ памяти L3 на борту, и к первому из них теперь добавляется еще один чип 3D V-cache на 64 МБ, доводя суммарный объем кэша третьего уровня до 128 МБ. И это приводит к новой интересной проблеме: получается, что один процессорный кристалл теперь тонкий и с 96 МБ памяти, а второй – обычный с 32. И, разумеется, лазить за данными в кэш первого кристалла из второго – долго. При этом работа кэша для программистов полностью прозрачна, рулением занимается сам процессор.
Еще одна проблема осталась со времен Ryzen 5800X3D: двухэтажность и нежность дополнительного кэша привели к ограничению напряжения, частоты и теплопакета, причем последний снизился достаточно ощутимо, со 170 до 120 Вт.
Как это отразилось в рабочих задачах, которым в большинстве своем огромный L3 не нужен – очевидно: обычные версии Ryzen без X3D оказываются и слегка быстрее, и ощутимо дешевле.
Более того, проблему с низкой пропускной способностью DDR5 дополнительный кэш не исправил просто потому, что для вычислительных задач это не проблема: тот же рендер не замечает даже перехода с одноканала в двухканал, чего уж тут говорить о разницы в скорости с четырехканалом.
А что по играм? Тому же 5800X дополнительный L3 ощутимо помог. Поэтому и не удивительно, что у старших Ryzen 7000 ситуация аналогичная: что Windows, что игроделы уже научились работать с чиплетными камнями AMD и стараться нагружать именно первый 8-ядерный кристалл, который как раз и имеет шапку в виде 3D V-cache. Так что и 7950X3D, и 7900X3D на 10-15% быстрее обычных версий, тут никаких сюрпризов, и даже 13900K слегка позади.
Но тут возникает интересный нюанс. Как мы уже объяснили в одном из предыдущих роликов, 8 ядер для игр хватит еще очень надолго, то есть брать 16-ядерный 7950X3D чисто на поиграть – не самая здравая идея. А в рабочих задачах обычная версия этого CPU лучше. Вот и получается, что старшие X3D интересны разве что тем, кто и активно занимается вычислительной работой, и хочет одновременно поиграть с картой уровня RTX 4090. Разумеется, таких пользователей не очень много, так что для большинства такие процессоры не представляют интересна.
Так что спустимся до более народного 8-ядерного Ryzen 7800X3D. В рабочих задачах тут ситуация ровно как у старших собратьев – обычный 7700X чутка быстрее из-за более высоких частот. Но, с другой стороны, никто и не берет такие процессоры для расчета погоды на Марсе, а вот для игр 8 ядер – оптимум. И тут новинка красных показывает себя просто отлично – лишние 64 МБ кэша делают ее на 10-15% быстрее, и как итог, 7800X3D напрямую соревнуется с топовым и гораздо более дорогим i9-13900K.
Казалось бы, вот он, лучший игровой процессор современности – но тут опять вылазит нюанс. 5800X3D был хорош в том числе и потому, что это вишенка на торте AM4 – ничего лучше для игр на этом сокете нет и уже не будет, и если хочется еще больше FPS, то нужно тратить много денег для перехода на AM5 или LGA1700. А вот в случае с AM5 линейка Ryzen 7000 – первая, но далеко не последняя. И с учетом того, что даже обычный Ryzen 7 7700X без проблем вытягивает RTX 4090 в реалистичных для нее разрешениях 2К и выше – нет никакого смысла в покупке 7800X3D, ибо через год выйдут Ryzen 8000, которые по слухам будут на 20-25% быстрее и которые точно обгонят X3D версии, при этом стоить новинки скорее всего будут даже дешевле.
Так что 7800X3D, безусловно, хорош – но здесь и сейчас, и только для тех, кто хочет играть с топовой видеокартой в FHD на 360-гц экране, выжимая из железа максимум плавности. Для реалистичных геймеров нет никакого смысла доплачивать за 64 МБ кэша лишние полторы сотни долларов или аж 20 тысяч рублей на Ali – они дадут минимальную разницу далеко за 200 FPS, так что почувствовать, что деньги потрачены не зря, не получится.
Может быть, польза от 3D V-cache есть в других применениях? Первое что вспоминается – это интегрированная графика, которая как раз появилась во «взрослых» Ryzen 7000. К тому же были слухи, что лишние 64 МБ кэша увеличивают ее производительность аж в 3-4 раза. Увы, как оказалось, реальный буст – меньше 10%, да и сама по себе эта графика не способна ни на что больше, чем тянуть доту на минималках.
Но что самое печальное – Ryzen 7000X3D оказались слишком нежными. И хотя разгон любых x3D процессоров через BIOS заблокирован, многие утилиты позволяли увеличивать напряжение на процессоре из системы. С печальным результатом – малейший выход за пределы 1.35 В приводит к гарантированной смерти – это касается и Ryzen 5800X3D. Более того, даже если не баловаться с разгоном, у многих старшие двухкристалльные Ryzen 7900X3D и 7950X3D умирают сами по себе: у кого на следующий день после покупки, у кого через месяц. Возможно, дело в разнородном нагреве двух процессорных кристаллов, ведь только один из них имеет второй ярус с кэшем. Но, в любом случае, проблема есть и достаточно массовая – и самое худшее в том, что официально в России эти процессоры не купить, они есть лишь на различных маркетплейсах. Поэтому если спустя пару недель после покупки свежий Ryzen отправится в кремниевую вальгаллу – вернуть деньги уже не получится, а стоят такие чипы немало. Касается ли эта проблема однокристалльного Ryzen 7800X3D – пока неизвестно, но лучше не рисковать и дождаться их появления в крупных сетевых магазинах.
Итоги
Обычно бывает, что первый блин оказывается комом, однако с технологией 3D V-cache оказалось все ровно наоборот: Ryzen 7 5800X3D получился на редкость хорошим процессором, который продлевает жизнь сокету AM4 в играх на долгие годы вперед. У AMD были все шансы повторить его успех с AM5 – но не удалось. Старшие процессоры, которые обычно берут под вычисления, буста от лишнего кэша L3 не получают вообще – даже проигрывают обычным версиям. Младший 8-ядерный 7800X3D, с одной стороны, оказался лучшим игровым камнем современности – только вот на деле почувствовать это не получится, чего не скажешь про ощутимую переплату за него. А с учетом того, что на горизонте уже видны продвинутые Ryzen 8000, да и новости о внезапных смертях 7000X3D оптимизма не прибавляют – нет никакого смысла в покупке таких процессоров. И если вспомнить, что обычные Ryzen 7000 уже активно дешевеют за рубежом, и рано или поздно это докатится и до России – они все еще остаются наилучшим выбором по цене-производительности на сокете AM5.
Показать полностью 23 1
Поддержать
10 месяцев назад
Huawei подала патентную заявку на EUV-сканер — он может открыть Китаю технологии менее 7 нм
Документы в Национальное управление интеллектуальной собственности Huawei подала в середине ноября, заявка зарегистрирована за номером 202110524685X, сообщает MyDrivers. В патентной заявке описаны ключевые компоненты EUV-сканера, в том числе генератор света с длиной волны 13,5 нм, комплект зеркал и система литографии. К сожалению, данный документ не означает фактической возможности Huawei построить эту сложную машину, включающую в себя множество современных компонентов, способных обеспечивать идеально согласованную работу в течение продолжительного времени. Кроме того, производство придётся обеспечить необходимым сырьём.
Показать полностью
1 год назад
3 нм чипы TSMC встают на конвейер уже в сентябре
TSMC начнёт массовое производство чипов по техпроцессу 3 нм уже в следующем месяце
Краткие IT-новости в Telegram — https://t.me/mknewsru
Показать полностью 1
Поддержать
1 год назад
Китайская SMIC уже около года выпускает 7-нм чипы
Аналитическая компания TechInsights, которая занимается вскрытием различных чипов для их независимого анализа, выявила использование китайским производителем SMIC 7-нм технологического процесса при производстве ASIC-чипов для майнинга биткоина. До этого считалось, что SMIC массово выпускает только 14-нм чипы и экспериментирует с 12-нм техпроцессом. На практике оказалось, что компания с прошлого года массово поставляет 7-нм продукцию.
Специалисты TechInsights приобрели для анализа чипы MinerVa производства SMIC. Исследование кремниевой структуры чипа показало, что элементы китайской микросхемы очень и очень похожи на те, которые инженеры TechInsights наблюдали при вскрытии чипов производства тайваньской TSMC. Аналитики не готовы утверждать, что SMIC скопировала технологию TSMC, но дают последней повод начать судебные разбирательства о возможной краже технологий.
Следует напомнить, что никакого сюрприза в способности SMIC выпускать условно 7-нм чипы нет (очевидно, что это маркетинговые 7 нм). Компания ещё в 2020 году сообщала, что намерена начать в 2021 году мелкосерийное производство чипов с использованием техпроцесса N+1 FinFET второго поколения. Эти чипы будут лучше 14-нм FinFET либо по производительности (+20 %), либо по энергопотреблению (-57 %). Производство чипов для майнинга биткоина, кстати, идеально подходит для обкатки новых техпроцессов, что также подтвердило вскрытие. Такие микросхемы имеют повторяющиеся структуры и содержат минимум ячеек памяти.
Показать полностью 1
1 год назад
Конец эпохи кремния. Процессоры будущего
Эпоха кремниевых чипов подходит к концу. Новые процессоры выходят горячими, а про закон Мура все забыли. Неужели развитие электроники остановится? Какими будут процессоры будущего? Есть ли замена кремнию?
Пока еще новые техпроцессы худо-бедно появляются: В 2026м TSMC обещает нам 2-нм чипы, а может слегка раньше появится непонятный техпроцесс Intel 20A. Но вы же знаете, что это маркетинг. Качественного уменьшения размера транзистора нам ждать не стоит.
И причина тут в физике — минимальный размер затвора кремниевого транзистора составляет 5 нм. Пять кремниевых нанометров – это предел. При меньшем значении просто не получится создать транзистор — он не будет работать как переключатель, электроны будут свободно туннелировать через его канал не обращая внимания на запрещенную зону. Иными словами, такой транзистор будет всегда включен — так что никакой магии вычислений не будет. И чем меньше маркетинговый техпроцесс — тем ближе мы к этому физическому пределу, и тем существенней становится эффект туннелирования, мешая проводить вычисления.
Конечно, чипмейкеры всеми силами пытаются эту проблему решить — так, можно уменьшать другие части транзистора, или делать затвор хитромудрой формы — например, в виде плавника, откуда и пошла технология finfet в которой транзисторы по сути трехмерные.
Однако все эти ухищрения привели к тому, что плотность транзисторов в чипах серьезно выросла, и сейчас в кусочке кремния размером с ноготь могут быть сотни миллиардов крошечных переключателей, активно выделяющих тепло при работе друг над другом. И отвод тепла от этого бутерброда — серьезная проблема.
Что, если не кремний?
Глядя на все эти проблемы, вызванные кремнием на закате жизни, возникает вопрос — а почему бы не сменить этот химический элемент на что-то другое? Ведь едва ли он такой один в таблице Менделеева, насчитывающей уже больше сотни элементов. Все верно — не один. Существует такой металл как германий, из которого также можно делать полупроводники.
Более того, первые транзисторы в конце 40ых именно из этого металла и делали. У него в три раза выше электропроводность, меньше напряжение — а значит и потери тепла — на p-n-переходе и меньше сопротивление открытого канала — в общем, германий кажется лучше кремния в полупроводниках, однако уже к 60ым от него почти полностью отказались.
Причин было сразу три. Во-первых, этот металл гораздо дороже и встречается реже кремния, которого почти 30 % в земной коре. Кремний там второй после кислорода.
Во-вторых, у германия гораздо меньше термостабильность, то есть при нагреве он быстрее теряет свои характеристики, к тому же есть проблемы с окислением.
Ну и в-третьих, у него хуже теплопроводность — то есть отводить тепло сложнее, чем от кремниевого чипа. Все это привело к тому, что эпоха германиевых компьютеров оказалась такой же короткой, как и ламповых — дальше пришлось переходить на кремний.
Эпоха чистого германия закончилась лет 60 назад. НО мы живем во времена продвинутых сплавов и сложных химических соединений. Вспомните Т-1000 из терминатора 2! Неужели нельзя прокачать германий, чтобы он стал лучше кремния для производства полупроводников? Оказывается, можно, и такое вещество зовется германан. По сути это как графен, только из германия – тонкая одноатомная пленка. Ее производство – отдельный вид искусства, когда сначала делается слоеный пирог из графена и кальция, после чего последний вымывается водой, которая в процессе отдает свой водород, делая германиевые связи прочнее и позволяя отделять однослойные пленки этого металла.
Как оказалось, такие пленки проводят ток в десять раз лучше кремния, да и вопросы с охлаждением тут не стоят так остро. Но, разумеется, все еще до коммерческого производства пока далеко – создавать германан научились лишь в лабораториях, и пока нет ни одного готового чипа на его базе. Однако германан – это еще не все, есть другое соединение на базе которого даже удалось создать полупроводниковый чип.
Называется оно дисульфидом молибдена, или же — молибденит. Сейчас его в основном используют для создания различных сплавов, однако у него есть отличные полупроводниковые свойства, работающие при таких крошечных размерах, когда кремний окисляется до стекла. Так, ученым удалось довести толщину молибденита до 0.65 нм при полном сохранении полупроводниковых свойств.
И самое главное – удалось создать на его базе полупроводниковый фотодиод, который в 5 раз чувствительнее кремния. Это позволит создавать в будущем еще более светочувствительные матрицы для камер.
Но существуют ли идеальный химический элемент, который может заменить кремний? Да, это углерод. Это даже иронично – основа нашей жизни может стать и основой будущих терминаторов, хотя и надо признать, что в крайне необычной форме.
Называется это необычное соединение углеродными нанотрубками и представляет собой листы графена, которые свернули в рулон. И да, они также являются полупроводниками, причем атомной толщины, к тому же их электропроводность втрое выше кремния.
Интересно, что на основе таких углеродных нанотрубок уже удалось сделать первый чип с 14 000 транзисторов. Правда, его техпроцесс не поражает воображение – всего лишь около микрометра, то есть уровень кремниевых процессоров 80-ых годов, однако все же это полноценный чип, на котором уже удалось запустить программу уровня «привет, мир». В будущем ученые планируют уменьшать размер нанотрубок и тем самым создавать более быстрые и эффективные чипы – но все еще это достаточно далекое будущее.
Все это заставляет задать вопрос – а есть ли уже замена кремнию, которую может купить и пощупать любой человек, а не только пара ученых в крупных лабораториях? Да, есть – зарядки с нитридом галлия, или GaN. Этот полупроводник стал популярным в 90-ые, на его основе делались первые белые светодиоды и некоторые виды синих лазеров. Его особенность в том, что производить электронику на его основе можно на тех же заводах, где делают кремниевые полупроводники. Но при этом нитрид галлия имеет более широкую запрещенную зону, что позволяет ему работать при больших напряжениях или меньшем нагреве, чем кремний – и это свойство очень нужно в компактных зарядках, где его и стали активно применять.
Отказ от КМОП
Хорошо, с первым подходом разобрались – можно заменить кремний на другое вещество, до физического лимита которого еще далеко. Но ведь есть и второй путь – отказаться от привычных нам КМОП-транзисторов и перейти на что-то другое. КМОП расшифровывается как комплементарная структура металл-оксид-полупроводник, и подавляющее большинство современных микросхем базируется на этом принципе, который был изобретен еще в 60-ых.
И возникает логичный вопрос – а что если пойти совсем другим путем и не отказываться от кремния, а изменить сам принцип работы микросхем?
Этот подход схож со сменой процессорных архитектур: так, Apple показала, что ее ARM-чипы M1 могут быть и ощутимо мощнее, и ощутимо холоднее многих современных х86-чипов от AMD и Intel. Возможно, отказ от КМОП-транзисторов сделает тоже самое? Что ж, такие идеи действительно есть, причем уже не только на бумаге – существуют так называемые туннельные или TFETS-транзисторы.
Они работают совершенно по-другому в отличие от полевых транзисторов: если для последних туннелирование электронов – это провал, транзистор не может закрыться и превращается в проводник, то вот TFETS-транзисторы именно на этом эффекте и работают. Все дело в том, что туннелирование выглядит как обман физики: логично, что если у электрона не хватает энергии для преодоления потенциального барьера, то он остается за ним, если ему не сообщить недостающую энергию. Однако эффект туннелирования позволяет электронам даже с недостаточной энергией «просачиваться» через этот барьер.
Иными словами, это позволяет TFETS-транзисторам работать при меньших напряжениях, чем обычным КМОП. Более того, уменьшение размера затвора тут ничем не грозит – чтобы избежать избыточного туннелирования нужно просто еще больше снизить напряжение – что к тому же приводит к меньшему выделению тепла. Неужели победа? Увы, не все так просто.
Во-первых, для производства туннельных транзисторов необходим графен — только это вещество обладает нужными свойствами. Во-вторых, для работы таких транзисторов требуются сверхнизкие температуры – увы, водянкой тут не обойтись, нужен жидкий азот. Так что ученым еще необходимо провести множество исследований, прежде чем мы увидим первые гаджеты на TFETS-транзисторах.
И раз уж мы уходим от классических КМОП-транзисторов, нельзя не вспомнить про мемристоры – нет мемы, тут не причем. Мемристоры были разработаны на бумаге еще в 70-ых годах, и их название происходит от слов memory – память и резистор. И это отлично описывает их главную особенность – если резистор это просто электрическое сопротивление, которое никак не меняется, то вот мемристор обладает эффектом памяти. Иными словами, он изменяет свою проводимость в соответствии с количеством протекшего через него электрического заряда.
Это свойство позволяет идеальному мемристору быть сразу и энергозависимой, и энергонезависимой памятью. То есть объединять ОЗУ и SSD. И это может перевернуть наши представления о хранении данных. Загрузка системы больше не будет нужна – ведь вся информация из ОЗУ и накопителя будет храниться в одном месте. Отключение электричества больше не приведет к потере информации – мемристор, будучи энергонезависимым, сохранит последнее состояние. Загрузка любых данных ускорится в разы – ведь больше не нужно перекидывать информацию между ОЗУ и накопителем.
Звучит как фантастика? Да, но это уже реальность. Израильская компания Weebit Nano сообщила об успешном завершении тестирования SoC на модульной архитектуре RISC-V с блоком встроенной резистивной памяти ReRAM на 128 КБ. Такая память менее подвержена температурным колебаниям, радиации и другим негативным факторам, что делает её привлекательной для индустриального и военного сектора.
Ну а если уйти совсем в будущее, то мемристоры идеально подходят на роль искусственных синапсисов для создания максимально приближенных к человеческому мозгу нейросетей, причем конструировать их можно будет на стандартном микрочиповом оборудовании. Дело в том, что мемристор ведет себя очень похожим на синапс образом: чем больший сигнал через него пропускается — тем лучше он пропускает сигнал в будущем.
Это свойство идеально подходит для обучения терминаторов максимально реалистично подстраиваться под нас.
Меняем электроны на фотоны
Итак, мы рассмотрели два подхода: это замена кремния на другие вещества, и изменение принципа работы транзисторов. Что еще можно поменять? Ну, например, сами носители заряда и данных, электроны, в ряде случаев отлично заменяются фотонами. Многие слышали или даже пользуются технологией PON или GPON – оптической сетью, которая в крупных городах уже активно вытесняет медную витую пару, позволяя миллионам людей получать быстрый доступ в интернет.
Схожую технологию можно использовать и в компьютерах: передавать информацию при помощи света выгоднее, так как это позволяет получать широкую полосу пропускания, невосприимчивость к электрическим помехам и минимальный нагрев. Теоретически оптические соединения помогут снизить задержку и увеличить скорость взаимодействия между вычислительными блоками процессора и кэшем, или же между процессором и ОЗУ.
Ограничения медных проводников мы уже видим на практике, когда лишь первые слоты PCIe у новых процессоров Intel работают по новому протоколу 5.0, а чипы GDDR6X приходится располагать максимально близко к GPU.
Фотоника снимет все эти ограничения, что позволит компьютерам развиваться дальше, хотя и надо сказать, что это не решает проблему с физическим пределом кремния.
Квантовые компьютеры
Осталось рассказать о самом популярном и последнем возможном подходе, который меняет уже не саму физику, а всю логику работы компьютеров. Подавляющее большинство различной электроники вращается между нулем и единицей, присутствием и отсутствием заряда. Именно этот простейший принцип позволяет транзисторам считать, а ячейкам памяти хранить информацию. Но простейшее – не всегда лучшее: такой подход накладывает серьезные ограничения на многие задачи. Эти ограничения отлично обходят квантовые компьютеры. Для них ложки не существует – нет четких нуля и единицы. Они оперируют кубитами – квантовыми битами, которые имеют состояние ноль и один одновременно. Как это возможно!?
Простой пример. Сколько существует чисел, составленных из двух нулей или единиц? Очевидно, четыре: это 00, 01, 10 и 11. Для записи каждого потребуется по два бита, итого в сумме – 8 бит. А кубитов потребуется лишь два, то есть в четыре раза меньше.
Да, такой подход взрывает мозг. На деле все еще сложнее, ибо нельзя просто взять и получить результаты квантовых вычислений, так как система в каждый момент времени находится в произвольном состоянии, и попытка считать данные превратит ее в классическую. Но мы сейчас рассказываем не о принципах работы квантовых компьютерах — это отдельная тема, а о том, являются ли они будущим сложных вычислений. И ответ – да. Еще год назад китайский стартап Shenzhen SpinQ Technology продемонстрировал суперкомпьютер с двумя кубитами ценой всего в 5000 долларов.
Буквально через несколько месяцев после китайцев нидерландский стартап QuantWare представил свой уже 5-кубитовый компьютер. Правда, его цена объявлена не была, но суть и так понятна: квантовые компьютеры становятся начинают появляться в массах, так что вполне возможно, что именно за ними будущее персональной электроники.
А пока, можно выдохнуть. Да, мы близки к пределу кремния, но на нем мир клином не сошелся. Хватает различных веществ, которые могут его заменить. Можно поменять даже принцип работы транзисторов, более того – саму логику работы компьютеров. Так что технологический прогресс не остановить – электроника будет продолжать развиваться, но в каком именно направлении – покажет будущее, если в этой ветке событий оно продолжит для нас существовать.
Хотите пересекаться чаще, жмите на кнопку подписаться. Вместе с нами следить за IT-новостями можно читая наш Телеграм-канал и группу вконтакте.
Показать полностью 24
Поддержать
1 год назад
Современные российские процессоры и что из них делают
1. Серверный процессор Эльбрус МЦСТ
Делают из него как обычные ПК так и серверы портировано пару игр GTA 3 и CS 1.6
-ос Linux можно запустить windows 7 на эмуляторе х86, но это будет жрать 2 ядра и 12 гигов памяти и он будет тормозить.
-работает только с видеокартами AMD
Отдельно брать процессор не имеет никакого смысла, поскольку сокета у российских процессоров нету и они паяются на материнскую плату, на заводе. Материнская плата тоже делается в РФ из китайских комплектующих, выглядит как обычная. Думаю где-нибудь на заводе СПГ такой стоит.
2. Байкал М для персональных компьютеров
Технические характеристики Baikal-M:
Техпроцесс: 28 нм
Процессор: 8 x ARM CortexA57 с тактовой частотой 1,5 ГГц (4 кластера по 2 ядра)
Графика: Mali-T628 (8 ядер, 500 МГц)
Кэш L2: 1 МБ на кластер
Контроллер памяти: 2 х DDR3/DDR4-2400 64-бит DRAM, ECC
Энергопотребление: менее 30 Вт
Делают на нём моноблоки (Гравитон, Эдельвейс, SafeRAY, GadGetPark и др)
И ноутбук Bitblaze
SSD (Нанотех Калининград) и LCD (РЦГЭ Троицк) тоже российские. Но сама архитектура не оригинальная как у эльбруса, а такая же как у apple arm (MacBook)
Технологию 28 нм делают, что бы можно было производить чипы на имеющихся предприятиях по всей России и в случае необходимости поддержать нужные секторы экономики банки, медицину и тд.
3. Процессоры «Скиф» для мобильных устройств (НПЦ «Элвис»)
4-х ядерный CPU ARM Cortex-A53 с тактовой частотой 1,2 ГГц; L1 кэш — 32 кбайт, L2 кэш — 1 Мбайт;
контроллер прерываний ARM GIC500;
128-бит SIMD/FPU сопроцессоры NEON;
доверенный контур загрузки и управления на базе собственного контроллера «Мультикор»;
высокопроизводительный 2-х ядерный DSP кластер ELcore-50 с аппаратной поддержкой функций обработки сигналов, алгоритмов искусственного интеллекта на базе нейросетей, шифрования;
связные акселераторы (Витерби, Турбо, БПФ и др.);
программируемый блок SDR;
графический процессор GPU PowerVR;
блоки ввода/вывода и обработки изображений 4K&60 fps (ISP с функцией HDR, кодек HEVC/H.264);
навигационное ядро с поддержкой ГЛОНАСС/GPS/BeiDou/GALILEO.
Смартфон AYYA T1
«Железная» составляющая смартфона предусматривает лишь одну комплектацию с 4 ГБ оперативной памяти и накопителем на 64 ГБ. Камер в смартфоне три – основная на 12+5 Мп и фронтальная на 13 Мп.
Последняя расположена непосредственно в экране в виде выреза в верхнем левом его углу. Сам по себе экран имеет разрешение HD+ или 1600х720 точек при диагонали 6,53 дюйма и частоте обновления 60 Гц.
AYYA T1 укомплектован батареей на 4000 мАч с зарядкой по USB-C. В телефоне нет поддержки сетей пятого поколения (5G), но есть два слота под SIM-карты и разъем под накопитель microSD до 128 ГБ.
Список характеристик отечественного AYYA T1 включает отдельный вход под проводные наушники и чип NFC для бесконтактной оплаты. Также в наличии сканер отпечатков пальцев (на задней панели). В комплект поставки, помимо кабеля зарядки и блока питания, входят гарнитура, чехол и защитное стекло на дисплей.
По заверению разработчиков, в обозримом будущем Android 11 будет заменен операционной системой KasperskyOS, а процессор MediaTek будет заменен на скиф.
4. Процессор КОМДИВ для военных (оборонная сфера)
Отечественный процессор KOMDIV-32 является разработкой Научно-исследовательского института системных исследований Российской академии наук. Данное предприятие занимается созданием высокопроизводительных, устойчивых к радиации микроархитектур.
32-битный микропроцессор КОМДИВ сделан на основе лицензированного у MIPS ядра. Основное преимущество – отличная устойчивость к радиации. Данный фактор делает процессор неубиваемым в условиях космоса, где радиация оказывает губительное воздействие на обычную технику. Именно поэтому он крайне полезен для аппаратов, что предназначены для использования в условиях космического пространства.
Российский процессор производится не для массового применения, его частота составляет 33-100 мегагерц. Его выпускают для нужд Министерства обороны России и военно-космических исследований. Производством микросхем занимаются исключительно российские компании, при участии РНЦ Курчатовский институт. Одним из основных предприятия также можно назвать Конструкторское бюро «Корунд-М».
Важно отметить, что КОМДИВ-32 способен работать при температуре от -60 до 125 градусов по Цельсию.
3-слоя металла, технология производства 0.5 мкм, 1.5 миллионов транзисторов, тактовая частота 33 MHz, 8KB L1 кэш инструкций, 8KB L1 кэш данных, совместим с IDT 79R3081E. Производительность составляет 24,5 VAX MIPS (тест Dhrystone2.1) и 8.7 MFLOPS (тест flops2.0).
технология производства 0.5 мкм, 3 слоя металлизации, тактовая частота 33-50МГц
1890ВМ2Т (аналог MIPS R3000[6], 5-стадийный конвейер, 8 КБ L1D, 8 КБ L1I, производительность оценивается в 50 MFLOPS)
технология производства 0.35 мкм, тактовая частота 90МГц[9] (максимальная — до 100 МГц[7]), 1.7 млн транзисторов.
SoC, радиационно стойкий, радиационная стойкость не меньше, чем к 200 кРад, технология производства 0,5 мкм кремний на изоляторе (КНИ), тактовая частота 33 МГц
1900ВМ2Т так же известный как, Резерв-32
радиационно стойкий, радиационная стойкость не меньше, чем к 200 кРад, тройное модульное резервирование на уровне блоков с самовосстановлением, тех. производства 0,35 мкм кремний на изоляторе (КНИ), диапазон рабочей температуры от −60 до 125 °C, тактовая частота 66 МГц.
SoC, SpaceWire, радиационно стойкий, радиационная стойкость не меньше, чем к 200 кРад, технология производства 0,25 мкм кремний на изоляторе (КНИ), тактовая частота 100 MHz.
Модель процессора «КОМДИВ-64» (1890ВМ5Ф) применяется в БЦВМ (бортовая цифровая вычислительная машина) информационно – управляющих систем современных российских истребителей Су-34 и Су-35.
Вычислительная система «ВОСХОД»
Показать полностью 9
1 год назад
TSMC — рожденный меж двух огней.
Заводы по производству микрочипов — самые дорогие, сложные, требовательные к кадрам и оборудованию производства из всех, существующих сейчас в мировой экономике. Их не воткнёшь быстро и где угодно, как цех по сборке игрушек или пошиву одежды, или даже нефтеперерабатывающий завод. На строительство, запуск и выход на нормальные мощности новых производств чипов с нуля даже при самых благоприятных требуется не менее трёх лет и миллиарды долларов США. Так и возник разрыв спроса и предложения на микрочипы, который оказалось невозможно закрыть быстро и просто. Уже к началу 2021 года дефицит чипов на мировом рынке составил около 30%.
Рождение Тайванского чиподейла.
В далеком 1987 году никто не мог представить, что глобальный рынок электроники и даже автомобилей будет полностью зависеть от (на тот момент) никому не известной тайваньской компании. Taiwan Semiconductor Manufacturing Company (TSMC) была основана выпускником Стэнфордского университета Моррисом Чжаном — на тот момент ему было 56 лет, и большая часть его профессиональной жизни прошла в Америке. Чжан считается создателем бизнес-модели цеха по производству чипов. В отличие от многих конкурентов, TSMC не разрабатывает полупроводники — она выполняет только заказы клиентов. Именно заказчики отвечают за R&D и дизайн, а TSMC просто выполняет заказы.
Почти четверть века TSMC не привлекала к себе внимания, выпуская рядовые полупроводники. На рынке доминировали Intel и Samsung, но ситуация начала меняться в 2012 году, когда к TSMC обратилась Apple. Компания заказала партию чипов для нового поколения айфонов и, как обычно, установила высокую планку — от тайваньского подрядчика ожидали революционных производственных технологий, которых тогда еще не было на массовом рынке. А еще Apple импонировала секретность, с которой TSMC подходила к разработкам. Например, при посещении производства USB-порты на ноутбуках гостей «запечатывали», блокировка передачи данных и камер — причем это касалось даже тех, кто собирался в конференц-залах и никак не соприкасался с производственными процессами.
В 2014 году TSMC уже стала основным поставщиком чипов для iPhone 6 — самого продаваемого смартфона в истории. На подрядчика обратили внимание конкуренты Apple — они хотели получить доступ к тем же разработкам и готовы были щедро оплачивать контракты. Постепенно «мастер чипов» вытеснил Intel и Samsung, захватив 84% рынка.
Сегодня от чипов компании зависит, как будет работать Twitter и TikTok на смартфоне, игровая приставка, автомобиль с современной микроэлектроникой и даже система управления танком. Капитализация TSMC уже превышает $560 млрд. В 2020-м, когда на карантине люди начали массово скупать ноутбуки, планшеты и игровые консоли, спрос на чипы вырос, и компания заработала $48 млрд, из которых чистая операционная прибыль составила $20 млрд. Неплохой результат для скромного контрагента, которым была компания в 80-е.
Впрочем, в успехе TSMC нет ничего удивительного — компания шла к нему намеренно и параллельно училась дипломатически вести переговоры с разными сторонами. В первую очередь, с Китаем и США. Большинство фабрик TSMC находятся на Тайване, который китайские власти считают своим, тогда как американские предлагают региону военную поддержку. При этом 62% выручки подрядчик получает от североамериканских клиентов и только 17% — от китайских. Но ни те, ни другие не могут обойтись без ее чипов.
Секрет TSMC заключается в расчетливости, умеренности и определенной скромности. Компания сразу заняла роль исполнителя и никогда не претендовала на позицию разработчика, поэтому ее невозможно было обвинить в заимствовании разработок.
Основатель TSMC сравнивал свою компанию с «Макдоналдсом» — вроде бы обычный фастфуд, но сама система построена так эффективно, что бизнес-модель работает и приносит миллиарды.
Впрочем, в отличие от «Макдоналдс», тайваньский «мастер чипов» устанавливает не самые низкие цены на свои услуги. Как отмечает The Economist, обычно производители полупроводников снижают цены по мере развития технологий.
Но TSMC этого не делает и не планирует. По оценкам аналитической фирмы IC Insights, услуги тайваньской компании стоят примерно в 2-3 раза дороже, чем услуги конкурентов с самыми передовыми технологиями.
Куда идут заработанные миллиарды? Частично в R&D: производитель чипов каждый год увеличивает капитальные расходы — в апреле TSMC установила планку допустимых затрат на уровне $30 млрд. Из них 80% пойдет на новые производственные технологии.
Компания Taiwan Semiconductor Manufacturing Co (TSMC), намеревается построить передовой завод на юге Тайваня в рамках программы расширения, на которую планируется выделить 100 млрд долларов. Программа направлена на решение проблемы беспрецедентной глобальной нехватки микросхем. Завод будет расположен в городе Гаосюн, где находятся мощности ASE Technology Holding, крупнейшего в мире поставщика услуг упаковки и тестирования микросхем. Компания TSMC пока не располагает производством в этом крупном промышленном и портовом городе. Кстати, Entegris, один из ключевых поставщиков химической продукции TSMC, направляет в город самые крупные инвестиции. Завод будет производить продукцию по нормам 6 и 7 нм. По неофициальным данным, его строительство начнётся уже в 2022 году, а в строй завод войдёт примерно в 2024 году.
Впрочем, будущее компании не безоблачно. У TSMC довольно скромные запасы кэша — всего $13 млрд, что не так много для технологической компании такого масштаба. Спрос на полупроводники часто колеблется, и есть риск, что после пандемии и «чипагеддона» выручка компании резко снизится и конечно не забываем, что могут произойти большие неприятности, если Китай решит вопрос с Тайванем радикальным способом.
Единственные кто не любит эту компанию — это местные фермеры Тайваня, особенно сильно в сезоны засухи.
Юго-запад острова одновременно служит центром сельского хозяйства и полупроводниковой промышленности. Фермерам нужна вода из хранилищ Тайваня для орошения рисовых полей в ожидании сезона дождей. Производители чипов используют воду для очистки своих заводов и кремниевых пластин — основы чипа, распределение воды происходит по такому принципу — 60% воды идет производителям полупроводников, остальные 40% идут на нужды сельского хозяйства и питьевой воды и воды для нужд населения, служб и хозяйств.
Ситуация усугубилась и политикой — важность этого фактора может уже в ближайшие годы оказаться такой, что нынешний кризис чипов по производственным и потребительским причинам окажется мелким недоразумением на фоне полноценной глобальной катастрофы.
В 2020 году США и КНР окончательно и явно вошли в политический клинч, перерастающий в Холодную войну 2.0. Экономическая и торговая война двух мощнейших экономик уже идёт вовсю — и тоже бьёт по рынку чипов. Ещё летом 2020 года США запретили китайской Huawei передавать разработки чипов на аутсорсинг тайваньской TSMC: абсолютному глобальному лидеру в этой области. Затем последовали другие санкционные меры, в том числе и против России.
TSMC оказалась между двух огней и какова будет судьба компании, совершенно неизвестна, время покажет, что ее ждет.
Показать полностью 1
1 год назад
Вычислительная техника в СССР. Развитие компьютеров. 1986 г
Фильм СССР
Первые компьютеры в СССР.
Создание компьютерной музыки.
Познавательный фильм о том какое влияние оказывает на человека компьютер, как необходима жизнь с компьютером в 1986 году.
Поддержать
2 года назад
И тут майнеры виноваты
Показать полностью 2
3 года назад
Эволюция процессоров. Часть 1: 8-битная эпоха
Цикл статей, посвященных истории развития основных компонентов персональных компьютеров, и предлагаем вам вспомнить и проследить за тем, как эволюционировали центральные процессоры. В первой части этой серии материалов речь пойдет о развитии интегральных решений в 70-х годах прошлого столетия.
1940–1960-е годы
Прежде чем углубляться в историю развития центральных процессоров, необходимо сказать несколько слов о развитии компьютеров в целом. Первые CPU появились еще в 40-х годах XX века. Тогда они работали с помощью электромеханических реле и вакуумных ламп, а применяемые в них ферритовые сердечники выполняли роль запоминающих устройств. Для функционирования компьютера на базе таких микросхем требовалось огромное количество процессоров. Подобный компьютер представлял собой огромный корпус размером с достаточно большую комнату. При этом он выделял большое количество энергии, а его быстродействие оставляло желать лучшего.
Компьютер, использующий электромеханические реле
Однако уже в 1950-х годах в конструкции процессоров стали применяться транзисторы. Благодаря их применению инженерам удалось добиться более высокой скорости работы чипов, а также снизить их энергопотребление, но повысить надежность.
В 1960-х годах получила свое развитие технология изготовления интегральных схем, что позволило создавать микрочипы с расположенными на них транзисторами. Сам процессор состоял из нескольких таких схем. С течением времени технологии позволили размещать все большее количество транзисторов на кристалле, в связи с чем количество используемых в CPU интегральных схем сокращалось.
Тем не менее архитектура процессоров была всё ещё очень и очень далека от того, что мы видим сегодня. Но выход в 1964 году IBM System/360 немного приблизил дизайн тогдашних компьютеров и CPU к современному — прежде всего в плане работы с программным обеспечением. Дело в том, что до появления этого компьютера все системы и процессоры работали лишь с тем программным кодом, который был написан специально для них. В своих ЭВМ компания IBM впервые использовала иную философию: вся линейка разных по производительности CPU поддерживала один и тот же набор инструкций, что позволяло писать ПО, которое работало бы под управлением любой модификации System/360.
По своей архитектуре процессор IBM System/360 являлся CISC-решением. Как вы знаете, все интегральные схемы делятся на две большие категории: RISC (Reduced Instruction Set Computer) и CISC (Complex Instruction Set Computer). Вторые работают со сложными инструкциями, а первые — с упрощенными. С точки зрения современных достижений, сложность инструкций для CISC-процессоров заключается в том, что их длина не ограничена. Вдобавок к этому они могут содержать сразу несколько арифметических действий. Однако в то время дизайн RISC не существовал в принципе, и IBM, а также другие производители использовали CISC-архитектуру вплоть до 1980-х годов.
У System/360 были и некоторые другие особенности. Например, в компьютере впервые был реализован 8-битный байт — до этого объем байта составлял 6 бит. Также System/360 стал первой 32-разрядной системой в истории. Также компьютер умел работать с виртуальной памятью, а старшие модели линейки поддерживали технологию виртуальных машин. Словом, процессор System/360 уже во многом напоминал современные решения.
Несмотря на высокую стоимость, System/360 стал относительно успешным на рынке. Во время презентации компьютера во всех городах США присутствовало порядка 100 тысяч бизнесменов, говорится в официальном пресс-релизе IBM от 7 апреля 1964 года. В первый месяц американская компания получила более 1000 заказов на IBM System/360 и еще одну тысячу в последующие четыре месяца. Для того времени цифры более чем впечатляющие. Компьютеры System/360 также активно использовались агентством NASA для управления космическими полетами в ходе программы «Аполлон».
Возвращаясь к теме совместимости System/360, нужно подчеркнуть, что IBM уделила очень много внимания данному аспекту. Например, современные компьютеры линейки zSeries до сих пор поддерживают работу программного обеспечения, написанного для платформы System/360.
Не стоит забывать и о компании DEC (Digital Equipment Corporation), а именно о ее линейке компьютеров PDP (Programmed Data Processor). Фирма была основана в 1957 году, и в 1960 году выпустила свой первый миникомпьютер PDP-1. Устройство представляло собой 18-битную систему и по размерам было меньше, чем мейнфреймы того времени, занимая «всего лишь» комнатный угол. В компьютер был интегрирован ЭЛТ-монитор. Интересно, что первая в мире компьютерная игра под названием Spacewar! была написана именно под платформу PDP-1. Стоимость компьютера в 1960 году составляла 120 тысяч долларов США, что было значительно ниже цены других мейнфреймов. Тем не менее PDP-1 не пользовался особой популярностью.
Первым коммерчески успешным устройством DEC стал компьютер PDP-8, выпущенный в 1965 году. В отличие от PDP-1, новая система была 12-битной. Стоимость PDP-8 составляла 16 тысяч долларов США – это был самый дешевый миникомпьютер того времени. Благодаря столь низкой цене устройство стало доступно промышленным предприятиям и научным лабораториям. В итоге было продано около 50 тысяч таких компьютеров. Отличительной архитектурной особенностью процессора PDP-8 стала его простота. Так, в нем было всего четыре 12-битных регистра, которые использовались для задач различного типа. При этом PDP-8 содержал всего 519 логических вентилей.
Архитектура процессоров PDP напрямую повлияла на устройство 4- и 8-битных процессоров, о которых и пойдет речь далее.
1971 год вошел в историю как год появления первых микропроцессоров. Да-да, таких решений, которые используются сегодня в персональных компьютерах, ноутбуках и других устройствах. И одной из первых заявила о себе тогда еще только-только основанная компания Intel, выпустив на рынок модель 4004 — первый в мире коммерчески доступный однокристальный процессор.
Прежде чем перейти непосредственно к процессору 4004, стоит сказать пару слов о самой компании Intel. Её в 1968 году создали инженеры Роберт Нойс и Гордон Мур, которые до того момента трудились на благо компании Fairchild Semiconductor, и Эндрю Гроувом. Кстати, именно Гордон Мур опубликовал всем известный «закон Мура», согласно которому количество транзисторов в процессоре удваивается каждый год.
Уже в 1969-ом, спустя всего лишь год после основания, компания Intel получила заказ от японской компании Nippon Calculating Machine (Busicon Corp.) на производство 12 микросхем для высокопроизводительных настольных калькуляторов. Первоначальный дизайн микросхем был предложен самой Nippon. Однако такая архитектура не приглянулась инженерам Intel, и сотрудник американской компании Тед Хофф предложил сократить число микросхем до четырех за счет использования универсального центрального процессора, который бы отвечал за арифметические и логические функции. Помимо центрального процессора, архитектура микросхем включала оперативную память для хранения данных пользователя, а также ПЗУ для хранения программного обеспечения. После утверждения окончательной структуры микросхем продолжилась работа над дизайном микропроцессора.
В апреле 1970 года к команде инженеров Intel присоединился итальянский физик Федерико Фаджин, который до этого также работал в компании Fairchild. У него был большой опыт работы в области логического проектирования компьютеров и технологий МОП (металл-оксид-полупроводник) с кремниевыми затворами. Именно благодаря вкладу Федерико инженерам Intel удалось объединить все микросхемы в один чип. Так увидел свет первый в мире микропроцессор 4004.
Что касается технических характеристик Intel 4004, то, по сегодняшним меркам, конечно, они были более чем скромные. Чип производился по 10-мкм техпроцессу, содержал 2300 транзисторов и работал на частоте 740 кГц, что означало возможность выполнения 92 600 операций в секунду. В качестве форм-фактора использовалась упаковка DIP16. Размеры Intel 4004 составляли 3×4 мм, а по бокам располагались ряды контактов. Изначально все права на чип принадлежали компании Busicom, которая намеревалась использовать микропроцессор исключительно в калькуляторах собственного производства. Однако в итоге они позволили Intel продавать свои чипы. В 1971 году любой желающий мог приобрести процессор 4004 по цене примерно 200 долларов США. К слову, чуть позже Intel выкупила все права на процессор у Busicom, предрекая важную роль чипа в последующей миниатюризации интегральных схем.
Несмотря на доступность процессора, его область применения ограничилась калькулятором Busicom 141-PF. Также долгое время ходили слухи, что Intel 4004 применялся в конструкции бортового компьютера беспилотного космического аппарата «Пионер-10», который стал первым межпланетным зондом, совершившим пролет вблизи Юпитера. Эти слухи напрямую опровергаются тем, что бортовые компьютеры «пионера» имели 18- или 16-битную разрядность, тогда как Intel 4004 был 4-битным процессором. Впрочем, стоит отметить, что инженеры NASA рассматривали возможность его использования в своих аппаратах, однако посчитали чип недостаточно испытанным для таких целей.
Спустя три года после выхода процессора Intel 4004 увидел свет его преемник — 4-битный Intel 4040. Чип производился по тому же 10-мкм техпроцессу и работал на той же тактовой частоте 740 кГц. Тем не менее, процессор стал немного «сложнее» и получил более богатый набор функций. Так, 4040 содержал 3000 транзисторов (на 700 больше, чем у 4004). Форм-фактор процессора остался прежним, однако вместо 16-пинового стали использовать 24-пиновый DIP. Среди улучшений 4040 стоит отметить поддержку 14 новых команд, увеличенную до 7 уровней глубину стека, а также поддержку прерываний. «Сороковой» использовался в основном в тестовых устройствах и управлении оборудованием.
Помимо 4-битных процессоров, в начале 70-х годов в арсенале Intel появилась и 8-битная модель — 8008. По своей сути чип представлял собой 8-битную версию процессора 4004 с меньшей тактовой частотой. Не стоит этому удивляться, потому как разработка модели 8008 велась параллельно с разработкой 4004. Так, в 1969 году компания Computer Terminal Corporation (впоследствии Datapoint) поручила Intel создание процессора для терминалов Datapoint, предоставив им схему архитектуры. Как и в случае с моделью 4004, Тэд Хофф предложил интегрировать все микросхемы в один чип, и в CTC согласились с таким предложением. Разработка плавно шла к своему завершению, но в 1970 году CTC отказались как от чипа, так и от дальнейшего сотрудничества с Intel. Причины были банальны: инженеры Intel не вложились в установленные сроки разработки, а функциональность предоставленного «камня» не соответствовала запросам CTC. Договор между двумя компаниями был разорван, права на все наработки остались у Intel. Новым чипом заинтересовалась японская компания Seiko, инженеры которой хотели использовать новый процессор в своих калькуляторах.
Так или иначе, но после прекращения сотрудничества с CTC Intel переименовала разрабатываемый чип в 8008. В апреле 1972 года этот процессор стал доступен для заказа по цене 120 долларов США. После того как Intel осталась без поддержки CTC, в стане компании осторожно относились к коммерческим перспективам нового чипа, однако сомнения были напрасны — процессор хорошо продавался.
Технические характеристики 8008 были во многом схожи с 4004. Процессор производился в 18-пиновом форм-факторе DIP по 10-мкм технологическим нормам и содержал 3500 транзисторов. Внутренний стек поддерживал 8 уровней, а объем поддерживаемой внешней памяти составлял до 16 Кбайт. Тактовая частота 8008 была установлена на отметке 500 кГц (на 240 кГц ниже, чем у 4004). За счет этого 8-битный процессор Intel зачастую проигрывал в скорости 4-битному.
На основе 8008 было построено несколько компьютерных систем. Первой из них стал не очень известный проект под названием The Sac State 8008. Эта система разрабатывалась в стенах университета Сакраменто под руководством инженера Билла Пентца. Несмотря на то, что долгое время первым созданным микрокомпьютером считалась система Altair 8800, именно The Sac State 8008 является таковым. Проект был завершен в 1972 году и представлял полностью полноценный компьютер для обработки и хранения медицинских записей пациентов. Компьютер включал в себя непосредственно процессор 8008, жесткий диск, 8 Кбайт оперативной памяти, цветной дисплей, интерфейс для подключения к мейнфреймам, а также собственную операционную систему. Стоимость такой системы была крайне высокой, поэтому The Sac State 8008 так и не смог получить должного распространения, хотя довольно продолжительное время конкурентов в плане производительности у него не было.
Тем не менее, The Sac State 8008 — не единственный компьютер, построенный на базе процессора 8008. Были созданы и другие системы, такие как американская SCELBI-8H, французская Micral N и канадская MCM/70.
Как и в случае с процессором 4004, спустя некоторое время 8008 также получил обновление в лице чипа 8080. Однако в случае с 8-битным решением изменения, внесенные в архитектуру процессора, были намного более существенные.
Intel 8080 был представлен в апреле 1974 года. Прежде всего, нужно отметить, что производство процессора перевели на новый 6-мкм техпроцесс. Более того, при производстве использовалась технология N-МОП (n-канальные транзисторы) — в отличие от 8008, который производился с помощью P-МОП-логики. Использование нового техпроцесса позволило разместить на кристалле 6000 транзисторов. В качестве форм-фактора использовался DIP с 40 контактами.
Модель 8080 получила более богатый набор команд, который включал 16 команд передачи данных, 31 команду для их обработки, 28 команд для перехода с прямой адресацией, а также 5 команд управления. Тактовая частота процессора составила 2 МГц — в 4 раза больше, чем у предшественника. Также 8080 имел 16-разрядную адресную шину, которая позволяла производить адресацию 64 Кбайт памяти. Эти нововведения обеспечили высокую производительность нового чипа, которая примерно в 10 раз превышала таковую у 8008.
Процессор 8080 в своей первой ревизии содержал серьезную ошибку, которая могла приводить к зависанию. Ошибка была исправлена в обновленной ревизии чипа, получившей название 8080А и выпущенной только спустя полгода.
Благодаря высокой производительности процессор 8080 стал очень популярным. Его применяли даже в системах управления уличным освещением и светофорами. Однако в основном его использовали в компьютерных системах, самой известной из которых являлась разработка компании MITS Altair-8800, представленная в 1975 году.
Altair-8800 работал на базе операционной системы Altair BASIC, а в качестве шины использовался интерфейс S-100, который спустя несколько лет стал стандартом для всех персональных компьютеров. Технические характеристики компьютера были более чем скромные. Он обладал всего лишь 256 байт оперативной памяти, у него отсутствовали клавиатура и монитор. Пользователь работал с компьютером путем ввода программ и данных в двоичной форме, щелкая набором маленьких ключей, которые могли занимать два положения: верхнее и нижнее. Результат считывался также в двоичной форме — по погасшим и светящимся лампочкам. Тем не менее, Altair-8800 стал настолько популярным, что такая маленькая компания, как MITS, попросту не успевала удовлетворять спрос на компьютеры. Популярности компьютера напрямую посодействовала его невысокая стоимость — 621 доллар США. При этом за 439 долларов США можно было приобрести компьютер в разобранном виде.
Возвращаясь к теме 8080, нужно отметить, что на рынке присутствовало множество его клонов. Тогдашняя маркетинговая ситуация в корне отличалась от того, что мы наблюдаем сегодня, и Intel было выгодно предоставлять сторонним компаниям лицензии на производство копий 8080. Производством клонов занималось множество крупных компаний, таких как National Semiconductor, NEC, Siemens и AMD. Да, в 70-е годы у AMD еще не было собственных процессоров — фирма занималась исключительно выпуском «ремейков» других кристаллов на собственных мощностях.
Интересно, что существовала и отечественная копия процессора 8080. Она была разработана Киевским НИИ микроприборов и носила название КР580ВМ80А. Было выпущено несколько вариантов этого процессора, в том числе и для применения в военных объектах.
В 1976 году появилась обновленная версия чипа 8080, получившая индекс 8085. Новый кристалл изготавливался по 3 мкм техпроцессу, что позволило разместить на чипе 6500 транзисторов. Максимальная тактовая частота процессора составляла 6 МГц. Набор поддерживаемых инструкций содержал 79 команд, среди которых были две новые команды для управления прерываниями.
Главным событием после выхода 8080 стало увольнение Федерико Фаджина. Итальянец не был согласен с внутренней политикой компании и решил уйти. Вместе с бывшим менеджером Intel Ральфом Унгерманном и японским инженером Масатоши Шимой он основал компанию Zilog. Сразу после этого началась разработка нового процессора, похожего по своей архитектуре на 8080. Так, в июле 1976 года появился процессор Zilog Z80, бинарно совместимый с 8080.
В сравнении с Intel 8080 Zilog Z80 имел много улучшений, например, расширенный набор команд, новые регистры и инструкции для них, новые режимы прерываний, два отдельных блока регистров, а также встроенную схему регенерации динамической памяти. Кроме этого, стоимость Z80 была намного ниже, чем 8080.
Что касается технических характеристик, то процессор производился по 3-мкм технологическим нормам с применением технологий N-МОП и КМОП. Z80 содержал 8500 транзисторов, а его площадь равнялась 22,54 мм2. Тактовая частота Z80 варьировалась в пределах от 2,5 до 8 МГц. Разрядность шины данных составляла 8 бит. Процессор обладал 16-битной адресной шиной, а объем адресуемой памяти составлял 64 Кбайт. Z80 производился в нескольких форм-факторах: DIP40 или 44-контактных PLCC и PQFP.
Z80 очень быстро превзошел в популярности все конкурирующие решения, в том числе и 8080. Процессор применялся в компьютерах таких компаний, как Sharp, NEC и других. Также Z80 «прописался» в консолях Sega и Nintendo. Кроме этого, процессор использовался в игровых автоматах, модемах, принтерах, промышленных роботах и многих других устройствах.
ZX Spectrum
Отдельного упоминания достойно устройство под названием ZX Spectrum, несмотря на то, что наше сегодняшнее повествование не касается решений 80-х годов прошлого столетия. Компьютер разрабатывался британской компанией Sinclair Research и был выпущен в 1982 году. ZX Spectrum был далеко не первой разработкой SR. В начале 1970-х годов глава компании и ее главный инженер Клайв Синклейр (Clive Sinclair) занимались тем, что продавали радиодетали по почте. Ближе к середине 70-х Клайв создал карманный калькулятор, который стал первым успешным изобретением фирмы. Отметим, что в компании не занимались непосредственно разработкой калькулятора. Им удалось найти удачное сочетание дизайна, функциональности и стоимости, благодаря которому устройство отлично продавалось. Следующим устройством Sinclair также стал калькулятор, но с более богатым набором функций. Устройство предназначалось для более «продвинутой» аудитории, но снискать особого успеха ему не удалось.
После калькуляторов Синклейр решил сосредоточиться на разработке полноценных компьютеров, и в промежутке между 1980 и 1981 годами появились домашние компьютеры линейки ZX: ZX80 и ZX81. Но самым популярным решением стала выпущенная в 1982 году система под названием ZX Spectrum. Изначально она должна была выйти на рынок под названием ZX83, но в последний момент было принято решение переименовать девайс, чтобы подчеркнуть поддержку компьютером цветного изображения.
ZX Spectrum стал популярным, прежде всего, благодаря своей простоте и дешевизне. Компьютер внешне напоминал игровую приставку. К нему через внешние интерфейсы подключались телевизор, который использовался в качестве монитора, и кассетный магнитофон, выполняющий функцию накопителя. На корпусе «Спектрума» располагалась многофункциональная клавиатура на 40 резиновых клавиш. Каждая кнопка имела до семи значений при работе в разных режимах.
Внутренняя архитектура ZX Spectrum также была довольно простой. Благодаря использованию технологии ULA (Uncommitted Logic Array) основную часть схемы компьютера удалось разместить на одной микросхеме. В качестве центрального процессора использовался Zilog Z80 с тактовой частотой 3,5 МГц. Объем оперативной памяти составлял 16 или 48 Кбайт. Правда, некоторые сторонние производители выпускали модули памяти объемом 32 Кбайт, которые вставлялись в один из портов расширения «Спектрума». Объем ПЗУ составлял 16 Кбайт, причем в память был вшит диалект языка BASIC под названием Sinclair BASIC. ZX Spectrum поддерживал вывод лишь однобитного звука через встроенный динамик. Компьютер работал лишь в графическом режиме (8 цветов и 2 уровня яркости). Следовательно, поддержки текстового режима не было. Максимальное разрешение при этом составляло 256×192 пикселов.
Начальная цена на ZX Spectrum была установлена на отметке 125 фунтов стерлингов. Интересно, что Sinclair Research всё ещё продавали свои устройства с помощью почты. За первые 17 месяцев после выхода «Спектрума» было продано более миллиона компьютеров.
В отличие от Западной Европы, где наряду с ZX Spectrum отлично продавались другие компьютеры (те же Atari и Commodore), в СССР устройство Sinclair было единоличным лидером продаж. Почему? Причина прежде всего крылась в низкой стоимости «Спектрума»: компьютер не облагался пошлинами и по цене был доступен многим советским гражданам. Устройства Atari и Commodore проделывали огромный путь, прежде чем попасть на прилавки советских магазинов, а их цена была значительно выше в сравнении с ZX Spectrum. Кроме этого, выяснилось, что большинство деталей «Спектрума» при необходимости можно было заменить отечественными. Даже «секретная» микросхема ULA была реализована на советских комплектующих. Как вы уже догадались, единственным незаменимым компонентом системы оставался лишь процессор Z80.
В итоге в СССР появилось множество клонов «Спектрума» с отечественными комплектующими: «Львов-48», «Москва-48», «Пентагон-48» и другие. К тому же добрая часть реплик была создана самими радиолюбителями, самостоятельно.
Популярности ZX Spectrum сыграло на руку огромное количество различных программ и игр. Компьютер также был довольно удобен для обучения программированию. Поэтому считается, что на «Спектруме» выросло целое поколение отечественных программистов.
На 90-е годы пришел пик популярности платформы ZX Spectrum на постсоветском пространстве. К этому времени на Западе компьютер уже потерял свою актуальность, а отечественные энтузиасты всё ещё создавали улучшенные клоны «Спектрума». Тем не менее, в продаже появлялись новые компьютеры, и ZX Spectrum начал постепенно отходить на второй план.
Motorola 6800
Не стоит думать, что у Intel не было конкурентов. Например, компания Motorola активно продвигала свой процессор 6800. Разработка чипа началась в 1969 году под руководством инженера Тома Беннетта, и, так же, как и 8080, «камень» Motorola был выпущен в 1974 году. Кристалл выпускался по 6-мкм техпроцессу, а его тактовая частота составляла те же 2 МГц. Интересно, что при производстве 6800 также использовалась технология N-МОП. В качестве форм-фактора использовался DIP40, а набор инструкций процессора содержал 78 команд. Отметим, что 6800 имел 16-битную адресную шину с прямой адресацией 64 Кбайт памяти.
Процессор использовался в огромном количестве персональных компьютеров. Среди них были и платы разработки MEK6800D2, SWTPC 6800, и компьютеры Ohio Scientific, Midwest Scientific и Smoke Signal Broadcasting, а также решение MITS Altair 680. Последний являлся полным аналогом системы Altair-8800. Как вы уже догадались единственным исключением было то, что использовался процессор 6800 вместо 8080.
На базе решения Motorola были изготовлены несколько микроконтроллеров, которые использовались в промышленных роботах и некоторых персональных компьютерах. Например, чип 6801 включал в себя, помимо процессора, 2 Кбайт ПЗУ, 128 байт ОЗУ и поддерживал аппаратно реализованное умножение.
Как и Intel, Motorola предоставляла лицензии на производство клонов 6800 сторонним компаниям. Поэтому на рынке появились копии процессора от Freescale и Hitachi, поддерживавшие более богатый набор функций. Например, они работали с расширенным набором команд.
Процессор MOS Technology 6502
В то же время дела внутри компании шли не так гладко. И в 1974 году команда разработчиков процессора 6800 в полном составе присоединилась к компании MOS Technology. Сразу же началась работа над чипом, схожим по архитектуре с решением Motorola. И в 1975 году свет увидел процессор 6501.
Однако продажи «камня» были прекращены вскоре после его анонса. Причиной этого стал иск Motorola к MOS Technology из-за совместимости процессора 6501 с системами на базе 6800. Прошло еще несколько месяцев, прежде чем в продажу поступила обновленная версия устройства MOS Technology с индексом 6502.
Характеристики этого чипа были намного скромнее таковых у Intel 8080 и Motorola 6800. «Пятьсот второй» представлял собой 8-разрядный процессор с 16-битной адресной шиной с поддержкой адресации до 64 Кбайт оперативной памяти. Его тактовая частота составляла всего 1 МГц, однако за счет доработанных способов адресации памяти и коротких циклов исполнения команд он не так сильно уступал в производительности конкурирующим решениям. Как и все процессоры 70-х годов, 6502 имел CISC-архитектуру, однако некоторые режимы адресации кристалла впоследствии были характерны для RISC-архитектур.
Главной отличительной особенностью процессора стала его цена. Она составляла всего лишь 25 долларов США, тогда как модели Intel 8080 и Motorola 6800 продавались по цене не менее 180 долларов. Это вынудило компании снизить цены на свои устройства, однако было уже поздно — продажи 6502 только росли. Достичь столь низкой стоимости CPU компании MOS Technology удалось за счет применения технологии исправления масок. Сами маски представляли собой большие изображения слоев кристалла микросхемы, впоследствии уменьшаемые с помощью фотографического процесса для получения слоев нужного размера. Абсолютно все маски имели неточности. Эти неточности зачастую дублировались на кристалл, из-за чего примерно 70% производимых чипов попросту оказывались нерабочими. В MOS Technology нашли способ исправления огрехов в масках, что позволило значительно увеличить процент выхода рабочих кристаллов, а следовательно, намного снизить себестоимость каждой микросхемы. Так, число рабочих кристаллов 6502 от их общего количества составляло уже около 70%.
Вдобавок к основной версии процессора было выпущено множество модификаций, получивших индексы от 6503 до 6507. У некоторых из них было урезано число функций в целях еще большего удешевления.
MOS Technology распространяли лицензии на производство процессоров 6502. В итоге такие компании, как Rockwell International, GTE, Synertek занимались производством клонов. Существовал и советский аналог 8502 под названием 4К602ВМ1.
6502 нашел применение в огромном количестве персональных компьютеров. Так, процессор использовался в компьютерах Apple I, Apple II и Commodore PET. Также 6502 служил основой в линейке домашних десктопов Atari и BBC Micro. Кроме этого, разработка MOS Technology применялась и в игровых приставках Atari 2600 и Nintendo Famicom.
В первой половине 1970-х годов рынок процессоров только начинал набирать обороты. Компания Intel уже тогда выбиралась на ведущие позиции, Motorola пыталась не отставать, а MOS Technology на пару Zilog приятно удивляли и не давали первым двум расслабиться. Напомним, что сегодня мы поговорили лишь о 4- и 8-битных процессорах, однако во второй половине 1970-х годов появились интересные 16-битные архитектуры, о которых мы расскажем в следующий раз.