Np ceil python что это
Перейти к содержимому

Np ceil python что это

  • автор:

Модуль math

Python 3 логотип

Модуль math – один из наиважнейших в Python. Этот модуль предоставляет обширный функционал для работы с числами.

math.ceil(X) – округление до ближайшего большего числа.

math.copysign(X, Y) — возвращает число, имеющее модуль такой же, как и у числа X, а знак — как у числа Y.

math.fabs(X) — модуль X.

math.factorial(X) — факториал числа X.

math.floor(X) — округление вниз.

math.fmod(X, Y) — остаток от деления X на Y.

math.frexp(X) — возвращает мантиссу и экспоненту числа.

math.ldexp(X, I) — X * 2 i . Функция, обратная функции math.frexp().

math.fsum(последовательность) — сумма всех членов последовательности. Эквивалент встроенной функции sum(), но math.fsum() более точна для чисел с плавающей точкой.

math.isfinite(X) — является ли X числом.

math.isinf(X) — является ли X бесконечностью.

math.isnan(X) — является ли X NaN (Not a Number — не число).

math.modf(X) — возвращает дробную и целую часть числа X. Оба числа имеют тот же знак, что и X.

math.trunc(X) — усекает значение X до целого.

math.exp(X) — e X .

math.expm1(X) — e X — 1. При X → 0 точнее, чем math.exp(X)-1.

math.log(X, [base]) — логарифм X по основанию base. Если base не указан, вычисляется натуральный логарифм.

math.log1p(X) — натуральный логарифм (1 + X). При X → 0 точнее, чем math.log(1+X).

math.log10(X) — логарифм X по основанию 10.

math.log2(X) — логарифм X по основанию 2.

math.pow(X, Y) — X Y .

math.sqrt(X) — квадратный корень из X.

math.acos(X) — арккосинус X. В радианах.

math.asin(X) — арксинус X. В радианах.

math.atan(X) — арктангенс X. В радианах.

math.atan2(Y, X) — арктангенс Y/X. В радианах. С учетом четверти, в которой находится точка (X, Y).

math.cos(X) — косинус X (X указывается в радианах).

math.sin(X) — синус X (X указывается в радианах).

math.tan(X) — тангенс X (X указывается в радианах).

math.hypot(X, Y) — вычисляет гипотенузу треугольника с катетами X и Y (math.sqrt(x * x + y * y)).

math.degrees(X) — конвертирует радианы в градусы.

math.radians(X) — конвертирует градусы в радианы.

math.cosh(X) — вычисляет гиперболический косинус.

math.sinh(X) — вычисляет гиперболический синус.

math.tanh(X) — вычисляет гиперболический тангенс.

math.acosh(X) — вычисляет обратный гиперболический косинус.

math.asinh(X) — вычисляет обратный гиперболический синус.

math.atanh(X) — вычисляет обратный гиперболический тангенс.

math.erf(X) — функция ошибок.

math.erfc(X) — дополнительная функция ошибок (1 — math.erf(X)).

math.gamma(X) — гамма-функция X.

math.lgamma(X) — натуральный логарифм гамма-функции X.

math.pi — pi = 3,1415926.

math.e — e = 2,718281.

Для вставки кода на Python в комментарий заключайте его в теги

  • Модуль csv - чтение и запись CSV файлов
  • Создаём сайт на Django, используя хорошие практики. Часть 1: создаём проект
  • Онлайн-обучение Python: сравнение популярных программ
  • Книги о Python
  • GUI (графический интерфейс пользователя)
  • Курсы Python
  • Модули
  • Новости мира Python
  • NumPy
  • Обработка данных
  • Основы программирования
  • Примеры программ
  • Типы данных в Python
  • Видео
  • Python для Web
  • Работа для Python-программистов
  • Сделай свой вклад в развитие сайта!
  • Самоучитель Python
  • Карта сайта
  • Отзывы на книги по Python
  • Реклама на сайте

numpy.ceil#

The ceil of the scalar x is the smallest integer i, such that i >= x . It is often denoted as \(\lceil x \rceil\) .

Parameters : x array_like

out ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where array_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None , locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs .

Returns : y ndarray or scalar

The ceiling of each element in x, with float dtype. This is a scalar if x is a scalar.

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) 

Округление чисел

При выполнении различных арифметических операций важно, чтобы результат округлялся правильно. Часто требуется округлять в большую, меньшую сторону, до ближайшего целого или округлить до сотых.

Для этого программист может использовать различные инструменты, такие как встроенная функция round(), преобразование к типу int и функции из подключаемого модуля math.

Способы округления чисел

Для округления чисел придумано много способов, они не лишены недостатков, однако часто используются для решения задач. Разберёмся в тонкостях каждого из них.

Если используется стандартная библиотека math, то в начале кода её необходимо подключить. Сделать это можно, например, с помощью инструкции: import math .

math.ceil() — округление чисел в большую сторону

Функция получила своё имя от термина «ceiling», который используется в математике для описания числа, которое больше или равно заданному.

Любая дробь находится в целочисленном интервале, например, 1.2 лежит между 1 и 2. Функция ceil() определяет, какая из границ интервала наибольшая и записывает её в результат округления.

math.ceil(5.15) # = 6 math.ceil(6.666) # = 7 math.ceil(5) # = 5

Важно помнить, что функция определяет наибольшее число с учётом знака. То есть результатом округления числа -0.9 будет 0, а не -1.

math.floor() — округление чисел в меньшую сторону

Функция округляет дробное число до ближайшего целого, которое меньше или равно исходному. Работает аналогично функции ceil() , но с округлением в противоположную сторону.

math.floor(7.9) # = 7 math.floor(9.999) # = 9 math.floor(-6.1) # = -7

math.trunc() — отбрасывание дробной части

Возвращает целое число, не учитывая его дробную часть. То есть никакого округления не происходит, Python просто забывает о дробной части, приводя число к целочисленному виду.

math.trunc(5.51) # = 5 math.trunc(-6.99) # = -6

Избавиться от дробной части можно с помощью обычного преобразования числа к типу int. Такой способ полностью эквивалентен использованию trunc() .

int(5.51) # = 5 int(-6.99) # = -6

Нормальное округление

Python позволяет реализовать нормальное арифметическое округление, использовав функцию преобразования к типу int.

И хотя int() работает по другому алгоритму, результат её использования для положительных чисел полностью аналогичен выводу функции floor(), которая округляет числа «вниз». Для отрицательных аналогичен функции ceil().

math.floor(9.999) # = 9 int(9.999) # = 9 math.ceil(-9.999) # = -9 int(-9.999) # = -9

Чтобы с помощью функции int() округлить число по математическим правилам, необходимо добавить к нему 0.5, если оно положительное, и -0.5, если оно отрицательное.

Тогда операция принимает такой вид: int(num + (0.5 if num > 0 else -0.5)). Чтобы каждый раз не писать условие, удобно сделать отдельную функцию:

def int_r(num): num = int(num + (0.5 if num > 0 else -0.5)) return num

Функция работает также, как стандартная функция округление во второй версии Python (арифметическое округление).

int_r(11.5) # = 12 int_r(11.4) # = 11 int_r(-0.991) # = -1 int_r(1.391) # = 1

round() — округление чисел

round() — стандартная функция округления в языке Python. Она не всегда работает так, как ожидается, а её алгоритм различается в разных версиях Python.

В Python 2

Во второй версии Python используется арифметическое округление. Оно обладает постоянно растущей погрешностью, что приводит к появлению неточностей и ошибок.

Увеличение погрешности вызвано неравным количеством цифр, определяющих, в какую сторону округлять. Всего 4 цифры на конце приводят к округлению «вниз», и 5 цифр к округлению «вверх».

Помимо этого, могут быть неточности, например, если округлить число 2.675 до второго знака, получится число 2.67 вместо 2.68. Это происходит из-за невозможности точно представить десятичные числа типа «float» в двоичном коде.

В Python 3

В третьей версии Python используется банковское округление. Это значит, что округление происходит до самого близкого чётного.

Такой подход не избавляет от ошибок полностью, но уменьшает шанс их возникновения и позволяет программисту добиться большей точности при вычислениях.

round(3.5) # = 4 round(9.5) # = 10 round(6.5) # = 6 round(-6.5) # = -6 round(-7.5) # = -8

Но если вам по каким то причинам нужно округление как в Python 2, то можно воспользоваться функцией написанной нами выше на основе приведения к целому числу.

Округление до сотых

У функции raund() есть ещё один аргумент. Он показывает до какого количества знаков после запятой следует округлять. Таким образом, если нам надо в Python округлить до сотых, этому параметру следует задать значение 2.

Пример округления до нужного знака:

round(3.555, 2) # = 3.56 round(9.515,1) # = 9.5 round(6.657,2) # = 6.66

Ошибки округления и модуль decimal

При округлении функцией round(), можно получить следующее:

round(2.65, 1) # = 2.6 round(2.85, 1) # = 2.9

Почему в одном случае округляется вниз, а в другом вверх? При переводе 2.85 в двоичную систему получается число, которое немного больше. Поэтому функция видит не «5», а «>5» и округляет вверх.

Проблему неточного представления чисел отлично иллюстрирует пример:

print (0.1 + 0.1 + 0.1) 0.30000000000000004

Из-за подобных ошибок числа типа «float» нельзя использовать там, где изменения значения на одну тысячную может привести к неверному результату. Решить данную проблему поможет модуль decimal.

decimal — модуль, позволяющий округлять десятичные дроби с почти 100% точностью. Его основной принцип: компьютер должен считать так, как считает человек. Речь идёт не о скорости вычисления, а о точности и отсутствии проблем неправильного представления чисел.

9.2. Python – Метод math.ceil() – округление в большую сторону числа

Метод ceil() – возвращает максимальное значение x – наименьшее целое число не меньше x. Простыми словами, в Python метод ceil() округляет число в большую сторону.

Синтаксис

Ниже приведен синтаксис метода ceil() в Python:

import math math.ceil(x) 

Примечание. Эта функция недоступна напрямую, поэтому нам нужно импортировать математический модуль, а затем нам нужно вызвать эту функцию, используя математический статический объект.

Параметры

х – числовое выражение.

Возвращаемое значение

Функция возвращает наименьшее целое число не меньше x – округление в большую сторону числа x.

Пример

В следующем примере показано использование метода ceil() в Python.

#!/usr/bin/python import math # Это импортирует математический модуль print "math.ceil(-45.17): ", math.ceil(-45.17) print "math.ceil(100.12): ", math.ceil(100.12) print "math.ceil(100.72): ", math.ceil(100.72) print "math.ceil(119L): ", math.ceil(119L) print "math.ceil(math.pi): ", math.ceil(math.pi) 

Когда приведённый выше код выполнится, он даст следующий результат:

math.ceil(-45.17): -45.0 math.ceil(100.12): 101.0 math.ceil(100.72): 101.0 math.ceil(119L): 119.0 math.ceil(math.pi): 4.0 

Оглавление

  • 1. Python – Самоучитель для начинающих
  • 2. Python – Обзор
  • 3. Python – Установка среды
  • 4. Python – Базовый синтаксис
  • 4.1. Python – Аргументы командной строки
  • 5. Python – Типы переменных
  • 6. Python – Основные операторы
  • 6.1. Python – Арифметические операторы
  • 6.2. Python – Операторы сравнения
  • 6.3. Python – Операторы присваивания: примеры
  • 6.4. Python – Побитовые операторы
  • 6.5. Python – Логические операторы
  • 6.6. Python – Операторы членства
  • 6.7. Python – Операторы идентификации
  • 6.8. Python – Приоритет операторов
  • 7. Python – Условные операторы
  • 7.1. Python – Условие if
  • 7.2. Python – Условные операторы if. else и elif
  • 7.3. Python – Вложенные операторы if
  • 8. Python – Циклы
  • 8.1. Python – Цикл while
  • 8.2. Python – Цикл for
  • 8.3. Python – Вложенные циклы
  • 8.4. Python – Оператор break
  • 8.5. Python – Оператор continue
  • 8.6. Python – Оператор pass
  • 9. Python – Числа
  • 9.1. Python – Метод abs()
  • 9.2. Python – Метод ceil()
  • 9.3. Python – Метод cmp()
  • 9.4. Python – Метод exp()
  • 9.5. Python – Метод fabs()
  • 9.6. Python – Метод floor()
  • 9.7. Python – Метод log()
  • 9.8. Python – Метод log10()
  • 9.9. Python – Метод max()
  • 9.10. Python – Метод min()
  • 9.11. Python – Метод modf()
  • 9.12. Python – Метод pow()
  • 9.13. Python – Метод round()
  • 9.14. Python – Метод sqrt()
  • 9.15. Python – Метод choice()
  • 9.16. Python – Метод randrange()
  • 9.17. Python – Метод random()
  • 9.18. Python – Метод seed()
  • 9.19. Python – Метод shuffle()
  • 9.20. Python – Метод uniform()
  • 9.21. Python – Метод acos()
  • 9.22. Python – Метод asin()
  • 9.23. Python – Метод atan()
  • 9.24. Python – Метод atan2()
  • 9.25. Python – Метод cos()
  • 9.26. Python – Метод hypot()
  • 9.27. Python – Метод sin()
  • 9.28. Python – Метод tan()
  • 9.29. Python – Метод degrees()
  • 9.30. Python – Метод radians()

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *