Что такое микропроцессор
ЭВМ получили широкое распространение, начиная с 50-х годов. Прежде это были очень большие и дорогие устройства, используемые лишь в государственных учреждениях и крупных фирмах. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.
Микропроцессор (МП) — это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.
В 1970 году Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ — первый микропроцессор Intel-4004, который уже в 1971 году был выпущен в продажу.
15 ноября 1971 г. можно считать началом новой эры в электронике. В этот день компания приступила к поставкам первого в мире микропроцессора Intel 4004.
Это был настоящий прорыв, ибо МП Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда работал он гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но и стоил первый МП в десятки тысяч раз дешевле.
Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП технологии с проектными нормами 10 мкм. Электрическая схема прибора насчитывала 2300 транзисторов. МП работал на тактовой частоте 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел адресный стек (счетчик команд и три регистра стека типа LIFO), блок РОНов (регистры сверхоперативной памяти или регистровый файл — РФ), 4-разрядное параллельное АЛУ, аккумулятор, регистр команд с дешифратором команд и схемой управления, а также схему связи с внешними устройствами. Все эти функциональные узлы объединялись между собой 4-разрядной ШД. Память команд достигала 4 Кбайт (для сравнения: объем ЗУ миниЭВМ в начале 70-х годов редко превышал 16 Кбайт), а РФ ЦП насчитывал 16 4-разрядных регистров, которые можно было использовать и как 8 8-разрядных. Такая организация РОНов сохранена и в последующих МП фирмы Intel. Три регистра стека обеспечивали три уровня вложения подпрограмм. МП i4004 монтировался в пластмассовый или металлокерамический корпус типа DIP (Dual In-line Package) всего с 16 выводами.
В систему его команд входило всего 46 инструкций.
Вместе с тем кристалл располагал весьма ограниченными средствами ввода/вывода, а в системе команд отсутствовали операции логической обработки данных (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ), в связи с чем их приходилось реализовывать с помощью специальных подпрограмм. Модуль i4004 не имел возможности останова (команды HALT) и обработки прерываний.
Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.
1 апреля 1972 г. фирма Intel начала поставки первого в отрасли 8-разрядного прибора i8008. Кристалл изготавливался по р-канальной МОП-технологии с проектными нормами 10 мкм и содержал 3500 транзисторов. Процессор работал на частоте 500 кГц при длительности машинного цикла 20 мкс (10 периодов задающего генератора).
В отличие от своих предшественников МП имел архитектуру ЭВМ принстонского типа, а в качестве памяти допускал применение комбинации ПЗУ и ОЗУ.
По сравнению с i4004 число РОН уменьшилось с 16 до 8, причем два регистра использовались для хранения адреса при косвенной адресации памяти (ограничение технологии — блок РОН аналогично кристаллам 4004 и 4040 в МП 8008 был реализован в виде динамической памяти). Почти вдвое сократилась длительность машинного цикла (с 8 до 5 состояний). Для синхронизации работы с медленными устройствами был введен сигнал готовности READY.
Система команд насчитывала 65 инструкций. МП мог адресовать память объемом 16 Кбайт. Его производительность по сравнению с четырехразрядными МП возрасла в 2,3 раза. В среднем для сопряжения процессора с памятью и устройствами ввода/вывода требовалось около 20 схем средней степени интеграции.
Возможности р-канальной технологии для создания сложных высокопроизводительных МП были почти исчерпаны, поэтому «направление главного удара» перенесли на n-канальную МОП технологию.
1 апреля 1974 МП Intel 8080 был представлен вниманию всех заинтересованных лиц. Благодаря использованию технологии п-МОП с проектными нормами 6 мкм, на кристалле удалось разместить 6 тыс. транзисторов. Тактовая частота процессора была доведена до 2 Мгц, а длительность цикла команд составила уже 2 мкс. Объем памяти, адресуемой процессором, был увеличен до 64 Кбайт. За счет использования 40-выводного корпуса удалось разделить ША и ШД, общее число микросхем, требовавшихся для построения системы в минимальной конфигурации сократилось до 6 (рис. 1).
Рис. 1. Микропроцессор Intel 8080.
В РФ были введены указатель стека, активно используемый при обработке прерываний, а также два программнонедоступных регистра для внутренних пересылок. Блок РОНов был реализован на микросхемах статической памяти. Исключение аккумулятора из РФ и введение его в состав АЛУ упростило схему управления внутренней шиной.
Новое в архитектуре МП — использование многоуровневой системы прерываний по вектору. Такое техническое решение позволило довести общее число источников прерываний до 256 (до появления БИС контроллеров прерываний схема формирования векторов прерываний требовала применения до 10 дополнительных чипов средней интеграции). В i8080 появился механизм прямого доступа в память (ПДП) (как ранее в универсальных ЭВМ IBM System 360 и др.).
ПДП открыл зеленую улицу для применения в микроЭВМ таких сложных устройств, как накопители на магнитных дисках и лентах дисплеи на ЭЛТ, которые и превратили микроЭВМ в полноценную вычислительную систему.
Традицией компании, начиная с первого кристалла, стал выпуск не отдельного чипа ЦП, а семейства БИС, рассчитанных на совместное использование.
МИКРОПРОЦЕССОР
(МП) — программно-управляемое универсальное устройство для цифровой обработки дискретной и (или) аналоговой информации и управления процессом этой обработки, построенное на одной или неск. больших интегральных схемах (БИС). По существу, МП может выполнять те же функции, что и процессор ЭВМ (или его составная часть),- отсюда с учётом изготовления его по технологии микроэлектроники произошло назв. «МП».
Области применения МП определяются, с одной стороны, возможностями МП как БИС — компонента электронных схем, а с другой — возможностями МП по обработке информации и управлению этим процессом, присущими ЭВМ. В совокупности с БИС постоянного запоминающего устройства (ПЗУ), оперативного запоминающего устройства (ОЗУ) (см. Памяти устройства )и БИС управления вводом-выводом информации МП позволяет создавать универсальные ЭВМ, причём он выполняет функции процессора (организацию работы ЭВМ, логич. и арифметич. обработку информации). Др. область применения МП — специа-лизиров. системы для сбора информации с объекта, её обработки и оптим. управления объектом. Примерами из этой области являются специализиров. управляющие МП (микроконтроллеры) и приборы со встроенной микропроцессорной системой ввода-вывода информации и её обработки (т. н. интеллектуальные приборы).
Спектр применений МП в физике определяется наряду с этим ещё двумя обстоятельствами. Во-первых, МП, работающий от внеш. источника энергии и управляющий состоянием замкнутой системы, способен управлять изменением её энтропии заданным образом [1]. Эта способность широко используется в автомати-зиров. устройствах управления системами для оптимизации либо повышения эффективности происходящих в них процессов (напр., удержание на заданном уровне темп-ры печи, в контур управления нагревателем к-рой включён МП). Во-вторых, любой алгоритм обработки информации можно реализовать программно (с помощью выполнения соответствующей программы универсальным МП) либо аппаратурно (с помощью епециализиров. МП, при разработке к-рого искомый алгоритм был реализован непосредственно в его электронной схеме). Последний способ обеспечивает макс, быстродействие алгоритма и представляет интерес в том случае, когда требуется обрабатывать информацию с частотой, превышающей частоту её обработки программным путём. Напр., для обработки изображений, следующих с частотой телевизионной развёртки, широко используется фурье-МП, аппаратурно реализующий алгоритмы быстрого преобразования Фурье.
МП характеризуются: полупроводниковой технологией изготовления интегральных схем, составляющих МП, их кол-вом; архитектурой (логич. организацией МП, определяющей процесс обработки информации в конкретном МП и включающей методы кодирования информации, состав, назначение и принципы взаимодействия аппаратурных средств МП); набором инструкций; ёмкостью адресуемой памяти; производительностью; стоимостью и др. [1, 2, 4, 5].
Первый МП — 4-разрядный Intel-4004 (фирма Intel, США) — появился в 1971 в ходе разработки программируемого калькулятора. Он состоял из 4 БИС, мог адресовать 4,5 кбайт памяти и имел 45 инструкций со временем выполнения 10-20 мкс. За ним в 1974 последовал 8-разрядный МП, а в 1976 насчитывалось уже св. 50 разд. типов МП. К 1989 разрядность МП увеличилась до 16-32 бит, время выполнения инструкций снизилось до 0,1-2 мкс, объём адресуемой памяти увеличился до десятков Мбайт.
По числу БИС, составляющих МП, их можно условно разделить на два существенно различных класса: однокристальные и многокристальные.
Однокристальные МП (ОМП) — функционально законченные процессоры с фиксируемыми разрядностью и набором инструкций. При этом инструкциями процессора являются инструкции ОМП. Обычно архитектура систем, построенных непосредственно на основе таких МП, повторяет архитектуру МП. Для построения системы достаточно подключить к ОМП блоки ОЗУ, ПЗУ, управления вводом-выводом информации и тактового генератора. ОМП различаются типом шин [типом набора проводников, функционально предназначенных для передачи информац. и (или) управляющих сигналов] адреса и данных: раздельные шины адреса и данных позволяют одновременно передавать по ним коды адреса и данных; совмещённые шины адреса и данных позволяют передавать адрес и данные в разные моменты времени, причём сначала производится адресация, т. е. выбор источника или получателя информации, а затем обмен данными. Такой способ, несмотря на большую сложность, позволяет сократить кол-во проводников шины и уменьшить кол-во выводов ОМП, что весьма существенно при увеличении его разрядности.
ОМП различаются также по способу синхронизации при выдаче адреса и обмена данными. В синхронных системах все сигналы строго определены во времени и обмен ведётся без подтверждения факта получения или выдачи информации абонентом.
В синхронно-асинхронных системах передача адреса осуществляется синхронно, а обмен происходит при взаимном обмене источника информации и её получателя сигналами подтверждения приёма (передачи) информации по след, схеме:
— источник начинает цикл обмена, выставляя данные на шины, и с временной задержкой, необходимой для надёжной установки данных на линиях связи, выставляет сигнал данные на шине;
— получатель по сигналу данные на шине производит их запись и только после этого выставляет сигнал данные получены на соответствующую линию связи;
— источник, получив сигнал данные получены, снимает сигнал данные на шине и сами данные;
— получатель после снятия сигнала данные на шине снимает сигнал данные получены;
— источник после снятия сигнала данные получены завершает текущий цикл обмена.
Этот способ обеспечивает высокую надёжность обмена, т. к. менее чувствителен к помехам, сбоям и временным характеристикам как узлов, участвующих в обмене, так и линий связи.
Многокристальные (секционные) МП (CMП) — секции разрядности 2, 4, 8 или 16 бит о фиксиров. набором инструкций для построения процессора с изменяемой разрядностью слова и разл. архитектурой. CMII позволяют создавать специализиров. процессоры с наборами инструкций, ориентированными на определ. применение (напр., фурье-анализ, процедуры обработки данных). При этом каждая инструкция такого специали-зиров. процессора состоит из последовательности инструкций (программы) СМП. В этом случае принято называть инструкции СМП микроинструкциями, а процесс разработки инструкций процессора — микропрограммированием.
Наряду с удобствами применение СМП связано с определ. трудностями: требуется микропрограммирование инструкций процессора. Поэтому наиб, распространёнными являются ОМП. В то же время, благодаря микропрограммированию инструкций процессора, состоящего из СМП, можно достичь его макс, производительности. В этом направлении наиб, перспективна разработка процессоров с сокращённым набором инструкций RISC (от англ. Reduce Instruction Set).
Архитектура МП. Для программиста понятие архитектуры МП включает в себя совокупность аппаратурных, программных и микропрограммных возможностей МП, важных при его программировании (внеш. архитектура). Для разработчика микропроцессорной аппаратуры важными особенностями, с точки зрения архитектуры МП, являются его аппаратурная организация и логич. структура электронных схем, отд. блоков и связывающих их информац. шин (внутр. архитектура). Эти особенности могут быть отличными от внеш. архитектуры МП.
Существует два типа внутр. архитектуры процессора, построенного из СМП: вертикальная и горизонтальная. В случае вертикальной архитектуры секция является функционально законченным и-разрядным процессором (2, 4, 8 или 16 бит), допускающим наращивание разрядности слова объединением секций. При горизонтальной архитектуре построения процессора секция является одним из его узлов, объединяемых для получения re-разрядного процессора.
Внеш. архитектура МП, как правило, традиционна: один набор команд обрабатывает один набор данных — SlSD (от англ. Single Instruction Single Data stream). Совр. МП в этом отношении предоставляют проектировщикам микропроцессорных систем новые возможности, т. к. большинство их имеет аппаратурные и программные средства для построения многопроцессорных систем. Так, становятся возможными архитектуры типов SIMD (от англ. Single Instruction Multiple Data stream), MISD (от англ. Multiple Instruction Single Data stream) и MIMD (от англ. Multiple Instruction Multiple Data stream).
Принцип функционирования МП. МП работает, выполняя т. н. циклы инструкций — последоват. извлечения из памяти (ОЗУ, ПЗУ) инструкций, управляющих работой МП, их анализ и исполнение. При этом в начале цикла МП обращается к памяти один раз для чтения инструкции, а затем при необходимости ещё неск. раз для чтения (записи) данных из памяти или ввода-вывода данных через устройства ввода-вывода информации (УВВ).
В ОМП обычно используется одна и та же шина для обращения к памяти и УВВ (рис. 1, а), причём в один и тот же момент времени может читаться или записываться только одна инструкция или слово данных, т. е. инструкции и данные обрабатываются последовательно (рис. 1, б).

Рис. 1. Архитектура (а) и временная диаграмма цикла инструкции (б) однокристального микропроцессора.
В СМП шины данных (адреса) памяти, в к-рых хранятся микроинструкции, как правило, разделены (рис. 2, а) и процесс выборки след, инструкции может быть совмещён во времени с исполнением текущей инструкции (рис. 2, б).

Рис. 2. Архитектура (а) и временная диаграмма цикла инструкции (б) секционного микропроцессора.
Технология изготовления МП. При произ-ве МП используются все известные виды технологий (ТТЛ, ТТЛШ, И 2 Л, И 3 JI, ЭСЛ, n -МОП, к-МОП и р -МОП [3-4]), дающие разл. выходные характеристики МП. Так, технология ТТЛШ позволяет получить быстродействующие МП с высокой радиац. стойкостью, но имеющие большую потребляемую мощность и невысокую степень интеграции, технология n -МОП обеспечивает высокую степень интеграции при умеренной мощности потребления, но низкую радиац. стойкость. Высокими потребительскими свойствами обладают МП, изготовленные по технологии к -МОП на подложке из сапфира, а изготовленные по технологии р -МОП имеют низкую себестоимость, но обладают небольшим быстродействием.
Универсальные и специализированные МП. Универсальный МП представляет собой многофункциональную БИС или их набор с программируемой логикой работы. Из-за своей универсальности он зачастую имеет низкую эффективность использования в разл. областях применений из-за несоответствия архитектуры МП характеру задач.
Альтернативой ему в этом отношении является специализиров. МП, архитектура к-рого полностью ориентирована на решение конкретной задачи. Появление таких МП стало возможным благодаря технологии произ-ва БИС на базе вентильных матриц или базовых матричных кристаллов, когда один или неск. нижних слоев БИС являются неизменными, а меняется лишь верх, слой (слои) [5].
Специализиров. МП развиваются по пути создания МП, реализующих спец. алгоритмы обработки данных (алгоритмич. МП). Для традиц. архитектуры первыми шагами в этом направлении стала разработка МП с сокращённым набором инструкций (RISC) и МП с набором инструкций языков программирования высокого уровня.
Алгоритмич. МП — по сути развитие указанных направлений. Напр., применительно к задачам физики создаются алгоритмич. МП, служащие для обработки изображений и речи, цифровой фильтрации сигналов (систолич. ЭВМ) [5], а также МП для аналитич. вычислений, реализации метода наим. квадратов, линейного программирования, работы с фактографич. базами данных и др.
Среди специализиров. МП можно выделить МП для обработки сигналов (сигнальные МП), к-рьте по сути дела являются алгоритмич. МП, обрабатывающими информацию, заданную не в цифровом виде. При этом перед началом её цифровой обработки МП преобразует эту информацию в цифровой вид (напр., аналоговый сигнал — с помощью встроенного аналого-цифрового преобразователя). В случае аналоговых входных сигналов обрабатывающий их специализиров. МП наз. аналоговым MП [4]. Они могут выполнять функции любой аналоговой схемы (усиление сигнала, модуляцию, смещение, фильтрацию и др.) в реальном масштабе времени. При этом применение аналогового МП значительно повышает точность обработки сигналов, их воспроизводимость, расширяет функциональные возможности обработки сигналов за счёт цифровых методов.
Прогресс в развитии МП будет определяться как новыми микроэлектронными технологиями их изготовления, так и новой архитектурой МП, реализующей разл. способы обработки информации: параллельную, ассоциативную и др. Причём поскольку технология в ближайшие годы позволит достигнуть предела по параметру плотности логич. вентилей на кристалл (определяется межатомными размерами кристалла), на первое место выйдет разработка новых принципов обработки информации и архитектур МП.
Лит.:1) Клингман Э., Проектирование микропроцессорных систем, пер. с англ., M., 1980; 2) Соучек Б., Микропроцессоры и микро-ЭВМ, пер. с англ., M., 1979; 3) Fаулджер Р., Программирование встроенных микропроцессоров, пер. с англ., M., 1985; 4) Микропроцессоры, под ред. Л. H. Преснухина, т. 1-3, M., 1986; 5) X в о щ С. Т., Варлинский H. H., Попов E. А., Микропроцессоры и микро-ЭВМ в системах автоматического управления. Справочник, Л., 1987; 6) Коул В., Активное развитие секторов нестандартных микропроцессов, «Электроника», 1987, т. 60, № 21, с5.
В. H. Задков, С. А. Филиппычев.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .
Микропроцессор: зачем нужен и как устроен
Что это такое? Микропроцессор – блок управления, способный выполнять операции ALU и взаимодействовать с подключенными устройствами. Именно эта деталь обрабатывает основной массив данных.
На что обратить внимание? Микропроцессоры отличаются по своей архитектуре и параметрам, таким как мощность, надежность, помехоустойчивость, требования к питанию. Именно их оценивают при выборе блока для покупки.
В статье рассказывается:
- Задачи микропроцессора
- Устройство микропроцессора
- Виды микропроцессоров
- Параметры микропроцессоров
- Часто задаваемые вопросы о микропроцессорах
Пройди тест и узнай, какая сфера тебе подходит:
айти, дизайн или маркетинг.
Бесплатно от Geekbrains
Задачи микропроцессора
Когда говорят о центральном процессоре (CPU, ЦП), имеют в виду прежде всего микропроцессор. Простыми словами, это устройство обработки информации. Оно ответственно за аппаратный контроль системы. Также именно ЦП выполняет арифметические и логические операции, считанные из машинного кода.
Микропроцессор в более широком смысле решает несколько ключевых задач. Он нужен для передачи данных между оперативной памятью и другими компонентами персонального компьютера. Так же с помощью CPU синхронизируется информация между внутренними и внешними накопителями, обеспечивается бесперебойная многопоточная и многопрограммная работа системы, выполняется дешифрация машинного кода. Даже без знания этой специфики уже становится понятно, что ЦП — это самый главный элемент любого компьютера.
Примечательно, что с момента своего возникновения и до нынешних времен микропроцессоры выполняют в целом одинаковые задачи. Несмотря на то, что производительность современных схем в тысячи раз превосходит скорость работы первых моделей, основные цели использования данных элементов в компьютерах остались прежними.
Узнай, какие ИТ — профессии
входят в ТОП-30 с доходом
от 210 000 ₽/мес
Павел Симонов
Исполнительный директор Geekbrains
Команда GeekBrains совместно с международными специалистами по развитию карьеры подготовили материалы, которые помогут вам начать путь к профессии мечты.
Подборка содержит только самые востребованные и высокооплачиваемые специальности и направления в IT-сфере. 86% наших учеников с помощью данных материалов определились с карьерной целью на ближайшее будущее!
Скачивайте и используйте уже сегодня:

Павел Симонов
Исполнительный директор Geekbrains
Топ-30 самых востребованных и высокооплачиваемых профессий 2023
Поможет разобраться в актуальной ситуации на рынке труда
Подборка 50+ бесплатных нейросетей для упрощения работы и увеличения заработка
Только проверенные нейросети с доступом из России и свободным использованием
ТОП-100 площадок для поиска работы от GeekBrains
Список проверенных ресурсов реальных вакансий с доходом от 210 000 ₽
Получить подборку бесплатно
Уже скачали 23672
Если подытожить вводную часть, то через управление микропроцессором решаются следующие задачи:
- чтение и интерпретация команд из разных разделов памяти, регистров и адаптеров внешних устройств;
- обработка запросов, поступающих для обслуживания компонентов ПК;
- синхронизация информации между накопителями;
- генерация сигналов управления различными элементами компьютера.
Устройство микропроцессора
Далее рассмотрим состав стандартного модуля ЦП.
- Арифметико-логическое устройство. Необходимо для выполнения всех арифметических и логических операций над данными соответствующих типов.
- Устройство управления. Координирует взаимодействие разных компонентов ПК.
- Блок памяти микропроцессорного модуля. Требуется для краткосрочного хранения, записи и передачи данных, которые в свою очередь используются при компьютерных тактовых вычислениях. Эта временная память имеет структуру регистров, что позволяет обеспечивать необходимое быстродействие компьютера. Главный модуль основной памяти справиться с такой задачей зачастую не может.
- Интерфейс микропроцессора. Обеспечивает обмен информацией с другими модулями ПК.
Последний компонент в свою очередь состоит из следующих частей:
- узел внутреннего интерфейса ЦП;
- набор буферных запоминающих регистров.
Также существует устройство управления системной шиной и портами ввода-вывода. Под последними тут понимается механизм сопряжения, обеспечивающий другим устройствам возможность подключаться к микропроцессору.
К микропроцессорному модулю и системной шине можно подключать не только стандартные внешние модули, но и дополнительные платы расширения с интегральными микросхемами. Это позволяет улучшить функционал всего микропроцессорного модуля. В частности, доступно подключение математического сопроцессора, контроллеров прерываний и прямого доступа к памяти, сопроцессора оптимизации ввода-вывода и т. д.
Для вас подарок! В свободном доступе до 05.11 —>
Скачайте ТОП-10
бесплатных нейросетей
для программирования
Помогут писать код быстрее на 25%
Чтобы получить подарок, заполните информацию в открывшемся окне
Рассмотрим функции некоторых подключаемых компонентов.
Математический сопроцессор ускоряет выполнение операций над бинарными числами с плавающей точкой, а также над десятичными числами, переведенными в двоичную форму. Также решаются тригонометрические функции. Данный сопроцессор обладает собственной системой команд и способен работать параллельно основному микропроцессорному модулю под управлением последнего. Как результат, многократно увеличивается быстродействие ЦП. По этой причине многие современные процессоры уже содержат встроенный математический сопроцессор.
Контроллеры прямого доступа к памяти непосредственно управляют дисковыми накопителями в обход микропроцессора. Это также способствует существенному повышению общей производительности.
Сопроцессор ввода-вывода функционирует параллельно с центральным процессором, ускоряя тем самым обмен данными в процессе обслуживания внешних модулей. При этом ресурсы микропроцессора освобождаются от выполнения процедур по вводу и выводу информации, в том числе в режиме прямого доступа к памяти.
Контроллер прерываний нужен для реализации процедур прерывания программы (то есть, когда программа временно прекращает выполнение, высвобождая ресурсы для другой, более важной задачи). Соответствующий запрос принимается контроллером от внешних модулей. Затем определяется уровень приоритета полученного запроса, и выдается сигнал прерывания центральному процессору.
Виды микропроцессоров
RISC
Данную аббревиатуру можно расшифровать как «компьютер с сокращенным набором команд». Время выполнения последних сокращается благодаря их упрощенному набору. В RISC-процессорах каждая инструкция направлена на выполнение какого-либо результата лишь в течение одного такта. При этом увеличивается объем кода и, как следствие, несколько снижается быстродействие компьютера. В итоге под хранение инструкции необходимо выделять больший объем оперативной памяти. Для преобразования языка высокого уровня в машинный код компилятор также выполняет больше действий.
Дарим скидку от 60%
на курсы от GeekBrains до 05 ноября
Уже через 9 месяцев сможете устроиться на работу с доходом от 150 000 рублей

Приведем некоторые модели RISC-процессоров:
- Мощность ПК: 601, 604, 615, 620
- DEC Alpha: 210642, 211066, 21068, 21164
- MIPS: TS (R10000) RISC-процессор
- PA-RISC: HP 7100LC
Архитектура микропроцессора RISC работает с оптимизированным набором инструкций. Такими процессорами оснащаются мобильные устройства (смартфоны, планшеты) из-за своей высокой энергоэффективности.
Перечислим характерные особенности RISC-архитектуры:
- простые инструкции;
- поддержка нескольких типов данных;
- использование простых режимов адресации, а также инструкций определенной длины для конвейерной обработки;
- поддержка регистра для использования в любом контексте;
- быстрое выполнение одного цикла;
- использование инструкций «LOAD» и «STORE» для доступа к ячейкам памяти;
- увеличенное число регистров;
- уменьшенное количество транзисторов.
CISC
В аббревиатуре зашифровано название «комплексная компьютерная инструкция». Процессоры данной архитектуры разрабатывались с целью минимизировать количество инструкций для одной программы и обеспечить построение сложных инструкций непосредственно аппаратными средствами.
На долю компилятора остается небольшая часть работы, заключающаяся в компиляции языка высокого уровня в машинный код. Инструкции при этом могут храниться в достаточно малом объеме оперативной памяти.
Некоторые модели CISC-процессоров приведены ниже.
- IBM 370/168
- VAX 11/780
- Intel 80486
Данный тип микропроцессоров, как уже говорилось, предназначен для снижения стоимости памяти, ведь тяжелые программы требуют больше места в ячейках этой памяти, что приводит к ее «удорожанию». В качестве решения проблемы реализовано уменьшение количества команд на одну программу путем вмещения нескольких операций в одну инструкцию.
Вот основные характеристики архитектуры CISC:
- большой выбор режимов адресации
- множество инструкций;
- изменяемая длина форматов команд;
- необходимость в нескольких циклах для выполнения одной инструкции;
- сложность декодирования инструкций;
- достаточность лишь одной инструкции для поддержки нескольких режимов адресации.
Параметры микропроцессоров
Центральный процессор подобно любой электронной плате обладает несколькими параметрами. Ниже приведем важнейшие из них.
- Максимальная частота микропроцессора и стабильность синхронизации.
- Номинальные значения источников питания, а также требования к их стабильности. Ради сокращения тепловыделения схем производители стремятся уменьшать напряжение питания. При этом повышается частота работы процессора. Если ранее требовалось напряжение в районе 15 Вольт, то теперь некоторым схемам достаточно менее 1 Вольта.
- Мощность потерь (рассеяния) на выходе схемы. Эта мощность преобразуется в тепло, которое нагревает транзисторы выходного каскада. По данному параметру можно определить степень тепловыделения БИС, определяющую требования к конструктивному исполнению всего микропроцессорного блока. Особую важность эта характеристика имеет во встраиваемых системах.
Только до 2.11
Скачай подборку материалов, чтобы гарантированно найти работу в IT за 14 дней
Список документов:

ТОП-100 площадок для поиска работы от GeekBrains

20 профессий 2023 года, с доходом от 150 000 рублей

Чек-лист «Как успешно пройти собеседование»
Чтобы зарегистрироваться на бесплатный интенсив и получить в подарок подборку файлов от GeekBrains, заполните информацию в открывшемся окне
- Уровни сигналов логических нуля и единицы. Определяются номиналами источника питания.
- Тип корпуса ЦП. Разрабатывается под конкретные условия эксплуатации. По этой характеристике также можно определить совместимость схемы при замене БИС.
- Рабочая температура окружающей среды. Существуют коммерческий и расширенный температурные диапазоны. В первом случае принимаются значения от 0 до +70 градусов Цельсия, во втором — от -40 до +85 градусов Цельсия.
- Помехоустойчивость. Характеризует способность ЦП исправно функционировать в условиях создаваемых помех. В качестве параметра оценки используется интенсивность помех, приводящих к нарушению функций в допустимых пределах. Таким образом, чем выше показатель помехоустойчивости, тем сильнее помехи, в условиях которых схема будет продолжать работать.
- Коэффициент разветвления по выходу. Определяет нагрузочную способность схемы и вычисляется как количество подобных схем, каждую из которых можно подключить к выходу данной схемы, не нарушив тем самым ее работоспособность. С увеличением этого коэффициента расширяются логические способности процессора и одновременно снижается число микросхем, требуемых для создания сложного вычислительного устройства. Однако при этом также снижаются показатели помехоустойчивости и быстродействия ЦП.
- Надежность схемы. Иными словами, это способность процессора функционировать на заложенном уровне качества при определенных условиях и в течение определенного времени. При производстве микропроцессоров, как правило, задается такой параметр, как интенсивность отказов либо средний период наработки на отказ. Но производители современных крупных интегральных схем данный показатель чаще всего не указывают. Лишь по другим характеристикам процессора можно косвенно оценить этот параметр. Например, используют паспортное значение надежности всего изделия.
- Параметры технологического процесса. Главной характеристикой здесь является разрешающая способность процесса. Номинальное значение в современных схемах составляет 5 нм.
Часто задаваемые вопросы о микропроцессорах
Чем отличаются цифровые сигнальные процессоры?
Под этим названием понимается целый класс микропроцессоров, объединенных общим предназначением — обработкой цифровой информации (звуков, изображений и т. д.). В частности ЦСП используются для распознавания образов. У этих схем присутствуют и черты, характерные для универсальных RISC-процессоров — организация работы по типу конвейера, наличие функций для выполнения вычислительных операций с плавающей запятой, поддержка умножения и других сложных специализированных вычислений на аппаратном уровне.
Что такое микропроцессор

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

Микропроцессор – microprocessor – процессор, выполненный в одном или нескольких взаимосвязанных полупроводниковых кристаллах интегральных схем. Предназначен для обработки и передачи данных, но не имеет памяти и средств ввода-вывода данных.

Микропроцессор.Процессор, выполненный в виде интегральной схемы. Состоит из цепей управления, регистров, сумматоров, счётчиков команд, очень быстрой памяти малого объёма.